메뉴 건너뛰기




Volumn 3, Issue 3, 2018, Pages 223-230

Machine Learning for Precision Psychiatry: Opportunities and Challenges

Author keywords

Artificial intelligence; Endophenotypes; Machine learning; Null hypothesis testing; Personalized medicine; Predictive analytics; Research Domain Criteria (RDoC); Single subject prediction

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; DIAGNOSTIC AND STATISTICAL MANUAL OF MENTAL DISORDERS; ENDOPHENOTYPE; EVIDENCE BASED PRACTICE; HUMAN; INFORMATION PROCESSING; INTERNATIONAL CLASSIFICATION OF DISEASES; MACHINE LEARNING; MENTAL DISEASE; MENTAL PATIENT; PERSONALIZED MEDICINE; PREDICTION; PRIORITY JOURNAL; PSYCHIATRY; REVIEW; SUPERVISED MACHINE LEARNING; SUPPORT VECTOR MACHINE; TREATMENT OUTCOME; UNSUPERVISED MACHINE LEARNING; VALIDATION PROCESS; PROCEDURES;

EID: 85041104529     PISSN: 24519022     EISSN: 24519030     Source Type: Journal    
DOI: 10.1016/j.bpsc.2017.11.007     Document Type: Review
Times cited : (505)

References (51)
  • 1
    • 34548011214 scopus 로고    scopus 로고
    • Can neuroscience be integrated into the DSM-V?
    • Hyman, S.E., Can neuroscience be integrated into the DSM-V?. Nat Rev Neurosci 8 (2007), 725–732.
    • (2007) Nat Rev Neurosci , vol.8 , pp. 725-732
    • Hyman, S.E.1
  • 4
    • 84962787673 scopus 로고    scopus 로고
    • Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls
    • Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D., Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 145 (2017), 137–165.
    • (2017) Neuroimage , vol.145 , pp. 137-165
    • Arbabshirani, M.R.1    Plis, S.2    Sui, J.3    Calhoun, V.D.4
  • 5
    • 84975687657 scopus 로고    scopus 로고
    • Computational psychiatry as a bridge from neuroscience to clinical applications
    • Huys, Q.J.M., Maia, T.V., Frank, M.J., Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 19 (2016), 404–413.
    • (2016) Nat Neurosci , vol.19 , pp. 404-413
    • Huys, Q.J.M.1    Maia, T.V.2    Frank, M.J.3
  • 6
    • 85013789441 scopus 로고    scopus 로고
    • Building better biomarkers: Brain models in translational neuroimaging
    • Woo, C.-W., Chang, L.J., Lindquist, M.A., Wager, T.D., Building better biomarkers: Brain models in translational neuroimaging. Nat Neurosci 20 (2017), 365–377.
    • (2017) Nat Neurosci , vol.20 , pp. 365-377
    • Woo, C.-W.1    Chang, L.J.2    Lindquist, M.A.3    Wager, T.D.4
  • 8
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • Breiman, L., Statistical modeling: The two cultures. Stat Sci 16 (2001), 199–231.
    • (2001) Stat Sci , vol.16 , pp. 199-231
    • Breiman, L.1
  • 9
    • 85030691538 scopus 로고    scopus 로고
    • Classical statistics and statistical learning in imaging neuroscience
    • Bzdok, D., Classical statistics and statistical learning in imaging neuroscience. Front Neurosci, 11, 2017, 543.
    • (2017) Front Neurosci , vol.11 , pp. 543
    • Bzdok, D.1
  • 10
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning. Springer Series in Statistics
    • Springer Heidelberg, Germany
    • Hastie, T., Tibshirani, R., Friedman, J., The Elements of Statistical Learning. Springer Series in Statistics. 2001, Springer, Heidelberg, Germany.
    • (2001)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 11
    • 81055138684 scopus 로고    scopus 로고
    • Big data: The next frontier for innovation, competition, and productivity. Technical report
    • McKinsey Global Institute Washington, DC
    • Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., et al. Big data: The next frontier for innovation, competition, and productivity. Technical report. 2011, McKinsey Global Institute, Washington, DC.
    • (2011)
    • Manyika, J.1    Chui, M.2    Brown, B.3    Bughin, J.4    Dobbs, R.5    Roxburgh, C.6
  • 12
    • 85033778850 scopus 로고    scopus 로고
    • Computer-Age Statistical Inference
    • Cambridge University Press Cambridge, UK
    • Efron, B., Hastie, T., Computer-Age Statistical Inference. 2016, Cambridge University Press, Cambridge, UK.
    • (2016)
    • Efron, B.1    Hastie, T.2
  • 13
    • 84926973806 scopus 로고    scopus 로고
    • Understanding Machine Learning: From Theory to Algorithms
    • Cambridge University Press Cambridge, UK
    • Shalev-Shwartz, S., Ben-David, S., Understanding Machine Learning: From Theory to Algorithms. 2014, Cambridge University Press, Cambridge, UK.
    • (2014)
    • Shalev-Shwartz, S.1    Ben-David, S.2
  • 14
    • 77957229824 scopus 로고    scopus 로고
    • Challenges and opportunities for drug discovery in psychiatric disorders: The drug hunters’ perspective
    • Wong, E.H.F., Yocca, F., Smith, M.A., Lee, C.-M., Challenges and opportunities for drug discovery in psychiatric disorders: The drug hunters’ perspective. Int J Neuropsychopharmacol 13 (2010), 1269–1284.
    • (2010) Int J Neuropsychopharmacol , vol.13 , pp. 1269-1284
    • Wong, E.H.F.1    Yocca, F.2    Smith, M.A.3    Lee, C.-M.4
  • 15
    • 84867579970 scopus 로고    scopus 로고
    • The efficacy of cognitive behavioral therapy: A review of meta-analyses
    • Hofmann, S.G., Asnaani, A., Vonk, I.J., Sawyer, A.T., Fang, A., The efficacy of cognitive behavioral therapy: A review of meta-analyses. Cognit Ther Res 36 (2012), 427–440.
    • (2012) Cognit Ther Res , vol.36 , pp. 427-440
    • Hofmann, S.G.1    Asnaani, A.2    Vonk, I.J.3    Sawyer, A.T.4    Fang, A.5
  • 16
    • 85042480157 scopus 로고    scopus 로고
    • Personalized medicine in psychiatry: Back to the future
    • Perna, G., Nemeroff, C.B., Personalized medicine in psychiatry: Back to the future. Pers Med Psychiatry, 1, 2017, 1.
    • (2017) Pers Med Psychiatry , vol.1 , pp. 1
    • Perna, G.1    Nemeroff, C.B.2
  • 17
    • 33751338530 scopus 로고    scopus 로고
    • Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR* D report
    • Rush, A.J., Trivedi, M.H., Wisniewski, S.R., Nierenberg, A.A., Stewart, J.W., Warden, D., et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR* D report. Am J Psychiatry 163 (2006), 1905–1917.
    • (2006) Am J Psychiatry , vol.163 , pp. 1905-1917
    • Rush, A.J.1    Trivedi, M.H.2    Wisniewski, S.R.3    Nierenberg, A.A.4    Stewart, J.W.5    Warden, D.6
  • 18
    • 84920735890 scopus 로고    scopus 로고
    • Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience
    • Gabrieli, J.D., Ghosh, S.S., Whitfield-Gabrieli, S., Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85 (2015), 11–26.
    • (2015) Neuron , vol.85 , pp. 11-26
    • Gabrieli, J.D.1    Ghosh, S.S.2    Whitfield-Gabrieli, S.3
  • 19
    • 85002131245 scopus 로고    scopus 로고
    • Resting-state connectivity biomarkers define neurophysiological subtypes of depression
    • Drysdale, A.T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23 (2017), 28–38.
    • (2017) Nat Med , vol.23 , pp. 28-38
    • Drysdale, A.T.1    Grosenick, L.2    Downar, J.3    Dunlop, K.4    Mansouri, F.5    Meng, Y.6
  • 20
    • 85019157622 scopus 로고    scopus 로고
    • Inference in the age of big data: Future perspectives on neuroscience
    • Bzdok, D., Yeo, B.T.T., Inference in the age of big data: Future perspectives on neuroscience. Neuroimage 155 (2017), 549–564.
    • (2017) Neuroimage , vol.155 , pp. 549-564
    • Bzdok, D.1    Yeo, B.T.T.2
  • 21
    • 78751611452 scopus 로고    scopus 로고
    • To explain or to predict?
    • Shmueli, G., To explain or to predict?. Stat Sci 25 (2010), 289–310.
    • (2010) Stat Sci , vol.25 , pp. 289-310
    • Shmueli, G.1
  • 22
    • 84991583783 scopus 로고    scopus 로고
    • Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer's disease
    • Zhang, X., Mormino, E.C., Sun, N., Sperling, R.A., Sabuncu, M.R., Yeo, B.T.T., Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer's disease. Proc Natl Acad Sci U S A 113 (2016), E6535–E6544.
    • (2016) Proc Natl Acad Sci U S A , vol.113 , pp. E6535-E6544
    • Zhang, X.1    Mormino, E.C.2    Sun, N.3    Sperling, R.A.4    Sabuncu, M.R.5    Yeo, B.T.T.6
  • 23
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–118.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3    Ko, J.4    Swetter, S.M.5    Blau, H.M.6
  • 24
    • 84976291730 scopus 로고    scopus 로고
    • The ASA's statement on p-values: Context, process, and purpose
    • Wasserstein, R.L., Lazar, N.A., The ASA's statement on p-values: Context, process, and purpose. Am Stat 70 (2016), 129–133.
    • (2016) Am Stat , vol.70 , pp. 129-133
    • Wasserstein, R.L.1    Lazar, N.A.2
  • 25
    • 0000927638 scopus 로고    scopus 로고
    • Predicting multivariate responses in multiple linear regression
    • Breiman, L., Friedman, J.H., Predicting multivariate responses in multiple linear regression. J R Stat Soc Ser B Stat Methodol 59 (1997), 3–54.
    • (1997) J R Stat Soc Ser B Stat Methodol , vol.59 , pp. 3-54
    • Breiman, L.1    Friedman, J.H.2
  • 26
    • 1942470793 scopus 로고    scopus 로고
    • Multitask Learning: Learning to Learn
    • Springer New York
    • Caruana, R., Multitask Learning: Learning to Learn. 1998, Springer, New York, 95–133.
    • (1998) , pp. 95-133
    • Caruana, R.1
  • 28
    • 0018178436 scopus 로고
    • Problems of spectrum and bias in evaluating the efficacy of diagnostic tests
    • Ransohoff, D.F., Feinstein, A.R., Problems of spectrum and bias in evaluating the efficacy of diagnostic tests. N Engl J Med 299 (1978), 926–930.
    • (1978) N Engl J Med , vol.299 , pp. 926-930
    • Ransohoff, D.F.1    Feinstein, A.R.2
  • 29
    • 80054848891 scopus 로고    scopus 로고
    • Translating biomarkers to clinical practice
    • Perlis, R.H., Translating biomarkers to clinical practice. Mol Psychiatr 16 (2011), 1076–1087.
    • (2011) Mol Psychiatr , vol.16 , pp. 1076-1087
    • Perlis, R.H.1
  • 30
    • 84877626914 scopus 로고    scopus 로고
    • Toward the future of psychiatric diagnosis: The seven pillars of RDoC
    • Cuthbert, B.N., Insel, T.R., Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Med, 11, 2013, 126.
    • (2013) BMC Med , vol.11 , pp. 126
    • Cuthbert, B.N.1    Insel, T.R.2
  • 31
    • 84973444509 scopus 로고    scopus 로고
    • “Schizophrenia” does not exist
    • Van Os, J., “Schizophrenia” does not exist. BMJ, 352, 2016, i375.
    • (2016) BMJ , vol.352 , pp. i375
    • Van Os, J.1
  • 32
    • 77954230363 scopus 로고    scopus 로고
    • Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders
    • Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D.S., Quinn, K., et al. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. Am J Psychiatry 167 (2010), 748–751.
    • (2010) Am J Psychiatry , vol.167 , pp. 748-751
    • Insel, T.1    Cuthbert, B.2    Garvey, M.3    Heinssen, R.4    Pine, D.S.5    Quinn, K.6
  • 33
    • 84876296688 scopus 로고    scopus 로고
    • Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis
    • Cross-Disorder Group of the Psychiatric Genomics C. Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet 381 (2013), 1371–1379.
    • (2013) Lancet , vol.381 , pp. 1371-1379
  • 34
    • 85001602413 scopus 로고    scopus 로고
    • OTTO: a new strategy to extract mental disease-relevant combinations of GWAS hits from individuals
    • Ehrenreich, H., Mitjans, M., Van der Auwera, S., Centeno, T.P., Begemann, M., Grabe, H.J., et al. OTTO: a new strategy to extract mental disease-relevant combinations of GWAS hits from individuals. Mol Psychiatry 23 (2018), 476–486.
    • (2018) Mol Psychiatry , vol.23 , pp. 476-486
    • Ehrenreich, H.1    Mitjans, M.2    Van der Auwera, S.3    Centeno, T.P.4    Begemann, M.5    Grabe, H.J.6
  • 36
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313 (2006), 504–507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 37
    • 84893874008 scopus 로고    scopus 로고
    • An Introduction to Statistical Learning
    • Springer New York
    • James, G., Witten, D., Hastie, T., Tibshirani, R., An Introduction to Statistical Learning. 2013, Springer, New York.
    • (2013)
    • James, G.1    Witten, D.2    Hastie, T.3    Tibshirani, R.4
  • 38
    • 84867539048 scopus 로고    scopus 로고
    • A few useful things to know about machine learning
    • Domingos, P., A few useful things to know about machine learning. Commun ACM 55 (2012), 78–87.
    • (2012) Commun ACM , vol.55 , pp. 78-87
    • Domingos, P.1
  • 39
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: A tutorial overview
    • Pereira, F., Mitchell, T., Botvinick, M., Machine learning classifiers and fMRI: A tutorial overview. Neuroimage 45 (2009), 199–209.
    • (2009) Neuroimage , vol.45 , pp. 199-209
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 40
    • 84937390759 scopus 로고    scopus 로고
    • A primer on pattern-based approaches to fMRI: Principles, pitfalls, and perspectives
    • Haynes, J.-D., A primer on pattern-based approaches to fMRI: Principles, pitfalls, and perspectives. Neuron 87 (2015), 257–270.
    • (2015) Neuron , vol.87 , pp. 257-270
    • Haynes, J.-D.1
  • 41
    • 63349109274 scopus 로고    scopus 로고
    • Revealing representational content with pattern-information fMRI—an introductory guide
    • Mur, M., Bandettini, P.A., Kriegeskorte, N., Revealing representational content with pattern-information fMRI—an introductory guide. Soc Cogn Affect Neurosci 4 (2009), 101–109.
    • (2009) Soc Cogn Affect Neurosci , vol.4 , pp. 101-109
    • Mur, M.1    Bandettini, P.A.2    Kriegeskorte, N.3
  • 44
    • 85052667661 scopus 로고    scopus 로고
    • Cross-validation failure: Small sample sizes lead to large error bars
    • [published online ahead of print Jun 24]
    • Varoquaux, G., Cross-validation failure: Small sample sizes lead to large error bars. [published online ahead of print Jun 24] Neuroimage, 2017.
    • (2017) Neuroimage
    • Varoquaux, G.1
  • 46
    • 84908520795 scopus 로고    scopus 로고
    • Making big data open: Data sharing in neuroimaging
    • Poldrack, R.A., Gorgolewski, K.J., Making big data open: Data sharing in neuroimaging. Nat Neurosci 17 (2014), 1510–1517.
    • (2014) Nat Neurosci , vol.17 , pp. 1510-1517
    • Poldrack, R.A.1    Gorgolewski, K.J.2
  • 47
    • 84975789666 scopus 로고    scopus 로고
    • The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
    • Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S., Duff, E.P., et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data 3, 2016, 160044.
    • (2016) Scientific Data 3 , pp. 160044
    • Gorgolewski, K.J.1    Auer, T.2    Calhoun, V.D.3    Craddock, R.C.4    Das, S.5    Duff, E.P.6
  • 48
    • 84961227396 scopus 로고    scopus 로고
    • Unlocking the Potential of the Internet of Things
    • McKinsey Global Institute Washington, DC
    • Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., et al. Unlocking the Potential of the Internet of Things. 2015, McKinsey Global Institute, Washington, DC.
    • (2015)
    • Manyika, J.1    Chui, M.2    Bisson, P.3    Woetzel, J.4    Dobbs, R.5    Bughin, J.6
  • 49
    • 84954288256 scopus 로고    scopus 로고
    • Finding the elusive psychiatric “lesion” with 21st-century neuroanatomy: A note of caution
    • Weinberger, D.R., Radulescu, E., Finding the elusive psychiatric “lesion” with 21st-century neuroanatomy: A note of caution. Am J Psychiatry 173 (2015), 27–33.
    • (2015) Am J Psychiatry , vol.173 , pp. 27-33
    • Weinberger, D.R.1    Radulescu, E.2
  • 50
    • 84998523709 scopus 로고    scopus 로고
    • Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy
    • Crown New York
    • O'Neil, C., Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. 2016, Crown, New York.
    • (2016)
    • O'Neil, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.