메뉴 건너뛰기




Volumn 39, Issue 18, 2018, Pages 6020-6036

An experimental comparison of multi-resolution segmentation, slic and k-means clustering for object-based classification of vhr imagery

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; IMAGE CLASSIFICATION; IMAGE ENHANCEMENT; IMAGE SEGMENTATION; ITERATIVE METHODS; LAND USE; MAPS; PIXELS;

EID: 85052086237     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2018.1506592     Document Type: Article
Times cited : (50)

References (47)
  • 3
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation
    • Baatz, M., and A. Schäpe. 2000. “Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation.” Angewandte Geographische Informationsverarbeitung 12 (12): 12–23.
    • (2000) Angewandte Geographische Informationsverarbeitung , vol.12 , Issue.12 , pp. 12-23
    • Baatz, M.1    Schäpe, A.2
  • 4
    • 84890224189 scopus 로고    scopus 로고
    • Quantitative Evaluation of Variations in Rule-Based Classifications of Land Cover in Urban Neighbourhoods Using Worldview-2 Imagery
    • Belgiu, M., L. Drǎguţ, and J. Strobl. 2014. “Quantitative Evaluation of Variations in Rule-Based Classifications of Land Cover in Urban Neighbourhoods Using Worldview-2 Imagery.” ISPRS Journal of Photogrammetry and Remote Sensing 87: 205–215. doi:10.1016/j.isprsjprs.2013.11.007.
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.87 , pp. 205-215
    • Belgiu, M.1    Drǎguţ, L.2    Strobl, J.3
  • 6
    • 73249139477 scopus 로고    scopus 로고
    • Object Based Image Analysis for Remote Sensing
    • Blaschke, T. 2010. “Object Based Image Analysis for Remote Sensing.” ISPRS Journal of Photogrammetry and Remote Sensing 65 (1): 2–16. doi:10.1016/j.isprsjprs.2009.06.004.
    • (2010) ISPRS Journal of Photogrammetry and Remote Sensing , vol.65 , Issue.1 , pp. 2-16
    • Blaschke, T.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. 2001. “Random Forests.” Machine Learning 45: 5–32. doi:10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 9
    • 84887828475 scopus 로고    scopus 로고
    • The Remote Sensing and GIS Software Library (Rsgislib)
    • Bunting, P., D. Clewley, R. M. Lucas, and S. Gillingham. 2014. “The Remote Sensing and GIS Software Library (Rsgislib).” Computers & Geosciences 62: 216–226. doi:10.1016/j.cageo.2013.08.007.
    • (2014) Computers & Geosciences , vol.62 , pp. 216-226
    • Bunting, P.1    Clewley, D.2    Lucas, R.M.3    Gillingham, S.4
  • 11
    • 0035546355 scopus 로고    scopus 로고
    • Color Image Segmentation: Advances and Prospects
    • Cheng, H. D., X. H. Jiang, Y. Sun, and J. Wang. 2001. “Color Image Segmentation: Advances and Prospects.” Pattern Recognition 34 (12): 2259–2281. doi:10.1016/S0031-3203(00)00149-7.
    • (2001) Pattern Recognition , vol.34 , Issue.12 , pp. 2259-2281
    • Cheng, H.D.1    Jiang, X.H.2    Sun, Y.3    Wang, J.4
  • 12
    • 84904466762 scopus 로고    scopus 로고
    • A Python-Based Open Source System for Geographic Object Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables
    • Clewley, D., P. Bunting, J. Shepherd, S. Gillingham, N. Flood, J. Dymond, R. Lucas, J. Armston, and M. Moghaddam. 2014. “A Python-Based Open Source System for Geographic Object Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables.” Remote Sensing 6: 6111–6135. doi:10.3390/rs6076111.
    • (2014) Remote Sensing , vol.6 , pp. 6111-6135
    • Clewley, D.1    Bunting, P.2    Shepherd, J.3    Gillingham, S.4    Flood, N.5    Dymond, J.6    Lucas, R.7    Armston, J.8    Moghaddam, M.9
  • 14
    • 84954224388 scopus 로고    scopus 로고
    • The Use of Logistic Model Tree (LMT) for Pixel-and Object-Based Classifications Using High-Resolution WorldView-2 Imagery
    • Colkesen, I., and T. Kavzoglu. 2017. “The Use of Logistic Model Tree (LMT) for Pixel-and Object-Based Classifications Using High-Resolution WorldView-2 Imagery.” Geocarto International 32 (1): 71–86. doi:10.1080/10106049.2015.1128486.
    • (2017) Geocarto International , vol.32 , Issue.1 , pp. 71-86
    • Colkesen, I.1    Kavzoglu, T.2
  • 15
    • 84891136260 scopus 로고    scopus 로고
    • Automated Parameterisation for Multi-Scale Image Segmentation on Multiple Layers
    • Drăgut, L., O. Csillik, C. Eisank, and D. Tiede. 2014. “Automated Parameterisation for Multi-Scale Image Segmentation on Multiple Layers.” ISPRS Journal of Photogrammetry and Remote Sensing 88 (100): 119–127. doi:10.1016/j.isprsjprs.2013.11.018.
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.88 , Issue.100 , pp. 119-127
    • Drăgut, L.1    Csillik, O.2    Eisank, C.3    Tiede, D.4
  • 16
    • 77951189897 scopus 로고    scopus 로고
    • ESP: A Tool to Estimate Scale Parameter for Multiresolution Image Segmentation of Remotely Sensed Data
    • Drăgut, L., D. Tiede, and S. R. Levick. 2010. “ESP: A Tool to Estimate Scale Parameter for Multiresolution Image Segmentation of Remotely Sensed Data.” International Journal of Geographical Information Science 24: 859–871. doi:10.1080/13658810903174803.
    • (2010) International Journal of Geographical Information Science , vol.24 , pp. 859-871
    • Drăgut, L.1    Tiede, D.2    Levick, S.R.3
  • 17
    • 84867594546 scopus 로고    scopus 로고
    • Landscape Analysis of Wetland Plant Functional Types: The Effects of Image Segmentation Scale, Vegetation Classes and Classification Methods
    • Dronova, I., P. Gong, N. E. Clinton, L. Wang, W. Fu, S. Qi, and Y. Liu. 2012. “Landscape Analysis of Wetland Plant Functional Types: The Effects of Image Segmentation Scale, Vegetation Classes and Classification Methods.” Remote Sensing of Environment 127: 357–369. doi:10.1016/j. rse.2012.09.018.
    • (2012) Remote Sensing of Environment , vol.127 , pp. 357-369
    • Dronova, I.1    Gong, P.2    Clinton, N.E.3    Wang, L.4    Fu, W.5    Qi, S.6    Liu, Y.7
  • 18
    • 84980337085 scopus 로고    scopus 로고
    • A Comparative Study of the Segmentation of Weighted Aggregation and Multiresolution Segmentation
    • Du, S., Z. Guo, W. Wang, L. Guo, and J. Nie. 2016. “A Comparative Study of the Segmentation of Weighted Aggregation and Multiresolution Segmentation..” GIScience & Remote Sensing 53: 651–670. doi:10.1080/15481603.2016.1215769.
    • (2016) Giscience & Remote Sensing , vol.53 , pp. 651-670
    • Du, S.1    Guo, Z.2    Wang, W.3    Guo, L.4    Nie, J.5
  • 19
    • 84898832826 scopus 로고    scopus 로고
    • Assessment of Multiresolution Segmentation for Delimiting Drumlins in Digital Elevation Models
    • Eisank, C., M. Smith, and J. Hillier. 2014. “Assessment of Multiresolution Segmentation for Delimiting Drumlins in Digital Elevation Models.” Geomorphology 214: 452–464. doi:10.1016/j. geomorph.2014.02.028.
    • (2014) Geomorphology , vol.214 , pp. 452-464
    • Eisank, C.1    Smith, M.2    Hillier, J.3
  • 20
    • 47849099239 scopus 로고    scopus 로고
    • Improvement of Image Segmentation Accuracy Based on Multiscale Optimization Procedure
    • Esch, T., M. Thiel, M. Bock, A. Roth, and S. Dech. 2008. “Improvement of Image Segmentation Accuracy Based on Multiscale Optimization Procedure..” IEEE Geoscience and Remote Sensing Letters 5 (3): 463–467. doi:10.1109/LGRS.2008.919622.
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.5 , Issue.3 , pp. 463-467
    • Esch, T.1    Thiel, M.2    Bock, M.3    Roth, A.4    Dech, S.5
  • 22
    • 84876726723 scopus 로고    scopus 로고
    • Change Detection from Remotely Sensed Images: From Pixel-Based to Object-Based Approaches
    • Hussain, M., D. Chen, A. Cheng, H. Wei, and D. Stanley. 2013. “Change Detection from Remotely Sensed Images: From Pixel-Based to Object-Based Approaches.” ISPRS Journal of Photogrammetry and Remote Sensing 80: 91–106. doi:10.1016/j.isprsjprs.2013.03.006.
    • (2013) ISPRS Journal of Photogrammetry and Remote Sensing , vol.80 , pp. 91-106
    • Hussain, M.1    Chen, D.2    Cheng, A.3    Wei, H.4    Stanley, D.5
  • 23
    • 84952791227 scopus 로고    scopus 로고
    • Image Segmentation Parameter Optimization considering Within-and Between-Segment Heterogeneity at Multiple Scale Levels: Test Case for Mapping Residential Areas Using Landsat Imagery
    • Johnson, B., M. Bragais, I. Endo, D. Magcale-Macandog, and P. Macandog. 2015. “Image Segmentation Parameter Optimization considering Within-and Between-Segment Heterogeneity at Multiple Scale Levels: Test Case for Mapping Residential Areas Using Landsat Imagery.” ISPRS International Journal of Geo-Information 4: 2292–2305. doi:10.3390/ijgi4042292.
    • (2015) ISPRS International Journal of Geo-Information , vol.4 , pp. 2292-2305
    • Johnson, B.1    Bragais, M.2    Endo, I.3    Magcale-Macandog, D.4    Macandog, P.5
  • 24
    • 79957819255 scopus 로고    scopus 로고
    • Unsupervised Image Segmentation Evaluation and Refinement Using a Multi-Scale Approach
    • Johnson, B., and Z. Xie. 2011. “Unsupervised Image Segmentation Evaluation and Refinement Using a Multi-Scale Approach.” ISPRS Journal of Photogrammetry and Remote Sensing 66: 473–483. doi:10.1016/j.isprsjprs.2011.02.006.
    • (2011) ISPRS Journal of Photogrammetry and Remote Sensing , vol.66 , pp. 473-483
    • Johnson, B.1    Xie, Z.2
  • 25
    • 62349132975 scopus 로고    scopus 로고
    • Increasing the Accuracy of Neural Network Classification Using Refined Training Data
    • Kavzoglu, T. 2009. “Increasing the Accuracy of Neural Network Classification Using Refined Training Data.” Environmental Modelling and Software 24: 850–858. doi:10.1016/j.envsoft.2008.11.012.
    • (2009) Environmental Modelling and Software , vol.24 , pp. 850-858
    • Kavzoglu, T.1
  • 26
    • 85032331266 scopus 로고    scopus 로고
    • Object-Oriented Random Forest for High Resolution Land Cover Mapping Using Quickbird-2 Imagery
    • edited by P. Samui, S. S. Roy, and V. E. Balas. Amsterdam: Elsevier
    • Kavzoglu, T. 2017. “Object-Oriented Random Forest for High Resolution Land Cover Mapping Using Quickbird-2 Imagery.” In Handbook of Neural Computation, edited by P. Samui, S. S. Roy, and V. E. Balas. Amsterdam: Elsevier. doi:10.1016/B978-0-12-811318-9.00033-8.
    • (2017) Handbook of Neural Computation
    • Kavzoglu, T.1
  • 28
    • 85029769564 scopus 로고    scopus 로고
    • Classification of Semiurban Landscapes from VHR Satellite Images Using a Novel Regionalized Multi-Scale Segmentation Approach
    • Kavzoglu, T., M. Yildiz Erdemir, and H. Tonbul. 2017. “Classification of Semiurban Landscapes from VHR Satellite Images Using a Novel Regionalized Multi-Scale Segmentation Approach.” Journal of Applied Remote Sensing 11 (3): 035016. doi:10.1117/1.JRS.11.035016.
    • (2017) Journal of Applied Remote Sensing , vol.11 , Issue.3
    • Kavzoglu, T.1    Yildiz Erdemir, M.2    Tonbul, H.3
  • 30
    • 84894607481 scopus 로고    scopus 로고
    • Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery
    • Li, C. C., J. Wang, L. Wang, L. Y. Hu, and P. Gong. 2014. “Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery.” Remote Sensing 6: 964–983. doi:10.3390/rs6020964.
    • (2014) Remote Sensing , vol.6 , pp. 964-983
    • Li, C.C.1    Wang, J.2    Wang, L.3    Hu, L.Y.4    Gong, P.5
  • 32
    • 33947591833 scopus 로고    scopus 로고
    • A Survey of Image Classification Methods and Techniques for Improving Classification Performance
    • Lu, D., and Q. Weng. 2007. “A Survey of Image Classification Methods and Techniques for Improving Classification Performance.” International Journal of Remote Sensing 28: 823–870. doi:10.1080/01431160600746456.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 33
    • 0036875711 scopus 로고    scopus 로고
    • Existential Uncertainty of Spatial Objects Segmented from Satellite Sensor Imagery
    • Lucieer, A., and A. Stein. 2002. “Existential Uncertainty of Spatial Objects Segmented from Satellite Sensor Imagery.” IEEE Transactions on Geoscience and Remote Sensing 40: 2518–2521. doi:10.1109/TGRS.2002.805072.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , pp. 2518-2521
    • Lucieer, A.1    Stein, A.2
  • 34
    • 84983249418 scopus 로고    scopus 로고
    • Parameter Evaluation and Optimization for Multi-Resolution Segmentation in Object-Based Shadow Detection Using Very High Resolution Imagery
    • Luo, H., D. Li, and C. Liu. 2017. “Parameter Evaluation and Optimization for Multi-Resolution Segmentation in Object-Based Shadow Detection Using Very High Resolution Imagery.” Geocarto International 32 (12): 1307–1332. doi:10.1080/10106049.2016.1222632.
    • (2017) Geocarto International , vol.32 , Issue.12 , pp. 1307-1332
    • Luo, H.1    Li, D.2    Liu, C.3
  • 35
    • 80052153041 scopus 로고    scopus 로고
    • Enhanced Evaluation of Image Segmentation Results
    • Marpu, P. R., M. Neubert, H. Herold, and I. Niemeyer. 2010. “Enhanced Evaluation of Image Segmentation Results.” Journal of Spatial Science 55: 55–68. doi:10.1080/14498596.2010.487850.
    • (2010) Journal of Spatial Science , vol.55 , pp. 55-68
    • Marpu, P.R.1    Neubert, M.2    Herold, H.3    Niemeyer, I.4
  • 37
    • 5044226567 scopus 로고
    • Spatial and Feature Space Clustering: Applications in Image Analysis
    • edited by Hlaváč V., R. Šára, Berlin, German: Springer
    • Matas, J., and J. Kittler. 1995. “Spatial and Feature Space Clustering: Applications in Image Analysis.” In Computer Analysis of Images and Patterns. CAIP 1995. Lecture Notes in Computer Science, edited by Hlaváč V., R. Šára, Vol 970, 162–173. Berlin, German: Springer. doi:10.1007/3-540-60268-2_293.
    • (1995) In Computer Analysis of Images and Patterns. CAIP 1995. Lecture Notes in Computer Science , vol.970 , pp. 162-173
    • Matas, J.1    Kittler, J.2
  • 38
    • 84930069044 scopus 로고    scopus 로고
    • Assessing Image Segmentation Quality – Concepts, Methods and Applications
    • edited by T. Blaschke, S. Lang, and G. J. Hay, Berlin: Springer
    • Neubert, M., H. Herold, and G. Meinel. 2008. “Assessing Image Segmentation Quality – Concepts, Methods and Applications.” In Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications, edited by T. Blaschke, S. Lang, and G. J. Hay, 769–784. Berlin: Springer. doi:10.1007/978-3-540-77058-9_42.
    • (2008) Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications , pp. 769-784
    • Neubert, M.1    Herold, H.2    Meinel, G.3
  • 40
    • 84933574325 scopus 로고    scopus 로고
    • Decision Forest: Twenty Years of Research
    • Rokach, L. 2016. “Decision Forest: Twenty Years of Research.” Information Fusion 27: 111–125. doi:10.1016/j.inffus.2015.06.005.
    • (2016) Information Fusion , vol.27 , pp. 111-125
    • Rokach, L.1
  • 42
    • 77957752577 scopus 로고    scopus 로고
    • An Automatic Region-Based Image Segmentation Algorithm for Remote Sensing Applications
    • Wang, Z., J. R. Jensen, and J. Im. 2010. “An Automatic Region-Based Image Segmentation Algorithm for Remote Sensing Applications.” Environmental Modelling Software 25 (10): 1149–1165. doi:10.1016/j.envsoft.2010.03.019.
    • (2010) Environmental Modelling Software , vol.25 , Issue.10 , pp. 1149-1165
    • Wang, Z.1    Jensen, J.R.2    Im, J.3
  • 43
  • 45
    • 41949100170 scopus 로고    scopus 로고
    • Image Segmentation Evaluation: A Survey of Unsupervised Methods
    • Zhang, H., J. E. Fritts, and S. A. Goldman. 2008. “Image Segmentation Evaluation: A Survey of Unsupervised Methods.” Computer Vision and Image Understanding 110: 260–280. doi:10.1016/j. cviu.2007.08.003.
    • (2008) Computer Vision and Image Understanding , vol.110 , pp. 260-280
    • Zhang, H.1    Fritts, J.E.2    Goldman, S.A.3
  • 46
    • 84922378744 scopus 로고    scopus 로고
    • Segmentation Quality Evaluation Using Region-Based Precision and Recall Measures for Remote Sensing Images
    • Zhang, X. L., X. Z. Feng, P. F. Xiao, G. J. He, and L. J. Zhu. 2015. “Segmentation Quality Evaluation Using Region-Based Precision and Recall Measures for Remote Sensing Images.” ISPRS Journal of Photogrammetry and Remote Sensing 102: 73–84. doi:10.1016/j.isprsjprs.2015.01.009.
    • (2015) ISPRS Journal of Photogrammetry and Remote Sensing , vol.102 , pp. 73-84
    • Zhang, X.L.1    Feng, X.Z.2    Xiao, P.F.3    He, G.J.4    Zhu, L.J.5
  • 47
    • 0030216623 scopus 로고    scopus 로고
    • A Survey on Evaluation Methods for Image Segmentation
    • Zhang, Y. J. 1996. “A Survey on Evaluation Methods for Image Segmentation.” Pattern Recognition 29: 1335–1346. doi:10.1016/0031-3203(95)00169-7.
    • (1996) Pattern Recognition , vol.29 , pp. 1335-1346
    • Zhang, Y.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.