메뉴 건너뛰기




Volumn 179, Issue , 2018, Pages 202-205

Conjugate gradient descent learned ANN for Indian summer monsoon rainfall and efficiency assessment through Shannon-Fano coding

Author keywords

Conjugate gradient descent algorithm; Indian summer monsoon rainfall; Neurocomputing; Shanno Fano coding

Indexed keywords

ATMOSPHERIC THERMODYNAMICS; BACKPROPAGATION ALGORITHMS; CODES (SYMBOLS); EFFICIENCY; RAIN;

EID: 85050881766     PISSN: 13646826     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jastp.2018.07.015     Document Type: Article
Times cited : (30)

References (53)
  • 2
    • 82655173896 scopus 로고    scopus 로고
    • A neurocomputing approach to predict monsoon rainfall in monthly scale using SST anomaly as a predictor
    • Acharya, N., Chattopadhyay, S., Kulkarni, M., Mohanty, U.C., A neurocomputing approach to predict monsoon rainfall in monthly scale using SST anomaly as a predictor. Acta Geophys. Pol. 60:1 (2012), 260–279.
    • (2012) Acta Geophys. Pol. , vol.60 , Issue.1 , pp. 260-279
    • Acharya, N.1    Chattopadhyay, S.2    Kulkarni, M.3    Mohanty, U.C.4
  • 3
    • 84906777236 scopus 로고    scopus 로고
    • Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine
    • Acharya, N., Shrivastava, N.A., Panigrahi, B.K., Mohanty, U.C., Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine. Clim. Dynam. 43:5–6 (2014), 1303–1310.
    • (2014) Clim. Dynam. , vol.43 , Issue.5-6 , pp. 1303-1310
    • Acharya, N.1    Shrivastava, N.A.2    Panigrahi, B.K.3    Mohanty, U.C.4
  • 4
    • 84904737173 scopus 로고    scopus 로고
    • Prediction of Indian summer monsoon rainfall: a weighted multi-model ensemble to enhance probabilistic forecast skills
    • Acharya, N., Chattopadhyay, S., Mohanty, U.C., Ghosh, K., Prediction of Indian summer monsoon rainfall: a weighted multi-model ensemble to enhance probabilistic forecast skills. Meteorol. Appl. 21:3 (2014), 724–732.
    • (2014) Meteorol. Appl. , vol.21 , Issue.3 , pp. 724-732
    • Acharya, N.1    Chattopadhyay, S.2    Mohanty, U.C.3    Ghosh, K.4
  • 5
    • 85050849733 scopus 로고    scopus 로고
    • RNS based on Shannon Fano coding for data encoding and decoding using {2n-1,2n,2n+1} moduli sets
    • Aremu, I.A., Gbolagade, K.A., RNS based on Shannon Fano coding for data encoding and decoding using {2n-1,2n,2n+1} moduli sets. Communications, 6(1), 2018, 25.
    • (2018) Communications , vol.6 , Issue.1 , pp. 25
    • Aremu, I.A.1    Gbolagade, K.A.2
  • 7
    • 77950862252 scopus 로고    scopus 로고
    • A multiscale information theory approach to assess spatialtemporal variability of daily precipitation
    • Brunsell, N.A., A multiscale information theory approach to assess spatialtemporal variability of daily precipitation. J. Hydrol. 385:1–4 (2010), 165–172.
    • (2010) J. Hydrol. , vol.385 , Issue.1-4 , pp. 165-172
    • Brunsell, N.A.1
  • 8
    • 34250179482 scopus 로고    scopus 로고
    • Estimating reference evapotranspiration with the FAO PenmanMonteith equation using daily weather forecast messages
    • Cai, J., Liu, Y., Lei, T., Pereira, L.S., Estimating reference evapotranspiration with the FAO PenmanMonteith equation using daily weather forecast messages. Agric. For. Meteorol. 145:1–2 (2007), 22–35.
    • (2007) Agric. For. Meteorol. , vol.145 , Issue.1-2 , pp. 22-35
    • Cai, J.1    Liu, Y.2    Lei, T.3    Pereira, L.S.4
  • 9
    • 34447256610 scopus 로고    scopus 로고
    • Feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India
    • Chattopadhyay, S., Feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India. Acta Geophys. Pol. 55:3 (2007), 369–382.
    • (2007) Acta Geophys. Pol. , vol.55 , Issue.3 , pp. 369-382
    • Chattopadhyay, S.1
  • 10
    • 47049108092 scopus 로고    scopus 로고
    • Comparative study among different neural net learning algorithms applied to rainfall time series
    • Chattopadhyay, S., Chattopadhyay, G., Comparative study among different neural net learning algorithms applied to rainfall time series. Meteorol. Appl. 15:2 (2008), 273–280.
    • (2008) Meteorol. Appl. , vol.15 , Issue.2 , pp. 273-280
    • Chattopadhyay, S.1    Chattopadhyay, G.2
  • 11
    • 84944834897 scopus 로고
    • Modeling daily precipitation occurrence process with Markov chain
    • Chin, E.H., Modeling daily precipitation occurrence process with Markov chain. Water Resour. Res. 13:6 (1977), 949–956.
    • (1977) Water Resour. Res. , vol.13 , Issue.6 , pp. 949-956
    • Chin, E.H.1
  • 12
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
    • Gardner, M.W., Dorling, S.R., Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32:14–15 (1998), 2627–2636.
    • (1998) Atmos. Environ. , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 13
    • 85046051783 scopus 로고    scopus 로고
    • Chaos: Making a New Science
    • Open Road Media
    • Gleick, J., Chaos: Making a New Science. 2011, Open Road Media.
    • (2011)
    • Gleick, J.1
  • 14
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: preliminary concepts
    • Govindaraju, R.S., Artificial neural networks in hydrology. I: preliminary concepts. J. Hydrol. Eng. 5:2 (2000), 115–123.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
    • Govindaraju, R.S.1
  • 15
    • 0027072328 scopus 로고
    • Determining and interpreting the order of a two-state Markov chain: application to models of daily precipitation
    • Gregory, J.M., Wigley, T.M.L., Jones, P.D., Determining and interpreting the order of a two-state Markov chain: application to models of daily precipitation. Water Resour. Res. 28:5 (1992), 1443–1446.
    • (1992) Water Resour. Res. , vol.28 , Issue.5 , pp. 1443-1446
    • Gregory, J.M.1    Wigley, T.M.L.2    Jones, P.D.3
  • 16
    • 0000293377 scopus 로고
    • Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method
    • Johansson, E.M., Dowla, F.U., Goodman, D.M., Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method. Int. J. Neural Syst. 2:04 (1991), 291–301.
    • (1991) Int. J. Neural Syst. , vol.2 , Issue.4 , pp. 291-301
    • Johansson, E.M.1    Dowla, F.U.2    Goodman, D.M.3
  • 17
    • 0035370335 scopus 로고    scopus 로고
    • Rainfall entropy for delineation of water resources zones in Japan
    • Kawachi, T., Maruyama, T., Singh, V.P., Rainfall entropy for delineation of water resources zones in Japan. J. Hydrol. 246:1–4 (2001), 36–44.
    • (2001) J. Hydrol. , vol.246 , Issue.1-4 , pp. 36-44
    • Kawachi, T.1    Maruyama, T.2    Singh, V.P.3
  • 18
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kisi, Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Eng. 12:5 (2007), 532–539.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.5 , pp. 532-539
    • Kisi1
  • 19
    • 84870159777 scopus 로고    scopus 로고
    • Modeling rainfall-runoff process using soft computing techniques
    • Kisi, O., Shiri, J., Tombul, M., Modeling rainfall-runoff process using soft computing techniques. Comput. Geosci. 51 (2013), 108–117.
    • (2013) Comput. Geosci. , vol.51 , pp. 108-117
    • Kisi, O.1    Shiri, J.2    Tombul, M.3
  • 22
    • 84977738351 scopus 로고
    • Seasonal forecasting of Indian summer monsoon rainfall: a review
    • Kumar, K.K., Soman, M.K., Kumar, K.R., Seasonal forecasting of Indian summer monsoon rainfall: a review. Weather 50:12 (1995), 449–467.
    • (1995) Weather , vol.50 , Issue.12 , pp. 449-467
    • Kumar, K.K.1    Soman, M.K.2    Kumar, K.R.3
  • 23
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • Lek, S., Guégan, J.F., Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 120:2–3 (1999), 65–73.
    • (1999) Ecol. Model. , vol.120 , Issue.2-3 , pp. 65-73
    • Lek, S.1    Guégan, J.F.2
  • 24
    • 84871234513 scopus 로고    scopus 로고
    • Understanding atmospheric behaviour in terms of entropy: a review of applications of the second law of thermodynamics to meteorology
    • Liu, Y., Liu, C., Wang, D., Understanding atmospheric behaviour in terms of entropy: a review of applications of the second law of thermodynamics to meteorology. Entropy 13:1 (2011), 211–240.
    • (2011) Entropy , vol.13 , Issue.1 , pp. 211-240
    • Liu, Y.1    Liu, C.2    Wang, D.3
  • 25
    • 85050867935 scopus 로고    scopus 로고
    • The essence of chaos
    • Lorenz, E.N., Haman, K., The essence of chaos. Pure Appl. Geophys. 147:3 (1996), 598–599.
    • (1996) Pure Appl. Geophys. , vol.147 , Issue.3 , pp. 598-599
    • Lorenz, E.N.1    Haman, K.2
  • 26
    • 3142666177 scopus 로고    scopus 로고
    • An ensemble of neural networks for weather forecasting
    • Maqsood, I., Khan, M.R., Abraham, A., An ensemble of neural networks for weather forecasting. Neural Comput. Appl. 13:2 (2004), 112–122.
    • (2004) Neural Comput. Appl. , vol.13 , Issue.2 , pp. 112-122
    • Maqsood, I.1    Khan, M.R.2    Abraham, A.3
  • 27
    • 0000146899 scopus 로고
    • Characterization of strange attractors of lorenz model of general circulation of the atmosphere
    • Masoller, C., Schifino, A.S., Romanelli, L., Characterization of strange attractors of lorenz model of general circulation of the atmosphere. Chaos, Solit. Fractals 6 (1995), 357–366.
    • (1995) Chaos, Solit. Fractals , vol.6 , pp. 357-366
    • Masoller, C.1    Schifino, A.S.2    Romanelli, L.3
  • 28
    • 0037862841 scopus 로고    scopus 로고
    • A comprehensive review for industrial applicability of artificial neural networks
    • Meireles, M.R., Almeida, P.E., Simes, M.G., A comprehensive review for industrial applicability of artificial neural networks. IEEE Trans. Ind. Electron. 50:3 (2003), 585–601.
    • (2003) IEEE Trans. Ind. Electron. , vol.50 , Issue.3 , pp. 585-601
    • Meireles, M.R.1    Almeida, P.E.2    Simes, M.G.3
  • 29
    • 65549088959 scopus 로고    scopus 로고
    • Communicating uncertainty in weather forecasts: a survey of the US public
    • Morss, R.E., Demuth, J.L., Lazo, J.K., Communicating uncertainty in weather forecasts: a survey of the US public. Weather Forecast. 23:5 (2008), 974–991.
    • (2008) Weather Forecast. , vol.23 , Issue.5 , pp. 974-991
    • Morss, R.E.1    Demuth, J.L.2    Lazo, J.K.3
  • 30
    • 0027706813 scopus 로고
    • What is a good forecast?An essay on the nature of goodness in weather forecasting
    • Murphy, A.H., What is a good forecast?An essay on the nature of goodness in weather forecasting. Weather Forecast. 8:2 (1993), 281–293.
    • (1993) Weather Forecast. , vol.8 , Issue.2 , pp. 281-293
    • Murphy, A.H.1
  • 31
    • 84875931252 scopus 로고    scopus 로고
    • Ozone prediction based on meteorological variables: a fuzzy inductive reasoning approach
    • Nebot, A., Mugica, V., Escobet, A., Ozone prediction based on meteorological variables: a fuzzy inductive reasoning approach. Atmos. Chem. Phys. Discuss.(3), 2008, 12343–12370.
    • (2008) Atmos. Chem. Phys. Discuss. , Issue.3 , pp. 12343-12370
    • Nebot, A.1    Mugica, V.2    Escobet, A.3
  • 32
    • 0032170668 scopus 로고    scopus 로고
    • The application of neural techniques to the modelling of time-series of atmospheric pollution data
    • Nunnari, G., Nucifora, A.F.M., Randieri, C., The application of neural techniques to the modelling of time-series of atmospheric pollution data. Ecol. Model. 111:2–3 (1998), 187–205.
    • (1998) Ecol. Model. , vol.111 , Issue.2-3 , pp. 187-205
    • Nunnari, G.1    Nucifora, A.F.M.2    Randieri, C.3
  • 34
    • 0026927426 scopus 로고
    • Multilayer perceptron, fuzzy sets, and classification
    • Pal, S.K., Mitra, S., Multilayer perceptron, fuzzy sets, and classification. IEEE Trans. Neural Network. 3:5 (1992), 683–697.
    • (1992) IEEE Trans. Neural Network. , vol.3 , Issue.5 , pp. 683-697
    • Pal, S.K.1    Mitra, S.2
  • 35
    • 27644532560 scopus 로고    scopus 로고
    • Cascading model uncertainty from mediu m range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS)
    • Pappenberger, F., Beven, K.J., Hunter, N.M., Bates, P.D., Gouweleeuw, B.T., Thielen, J., De Roo, A.P.J., Cascading model uncertainty from mediu m range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS). Hydrol. Earth Syst. Sci. Discuss. 9:4 (2005), 381–393.
    • (2005) Hydrol. Earth Syst. Sci. Discuss. , vol.9 , Issue.4 , pp. 381-393
    • Pappenberger, F.1    Beven, K.J.2    Hunter, N.M.3    Bates, P.D.4    Gouweleeuw, B.T.5    Thielen, J.6    De Roo, A.P.J.7
  • 36
    • 0004064633 scopus 로고    scopus 로고
    • Neural Networks: a Systematic Introduction
    • Springer Science & Business Media
    • Rojas, R., Neural Networks: a Systematic Introduction. 2013, Springer Science & Business Media.
    • (2013)
    • Rojas, R.1
  • 37
    • 0036612028 scopus 로고    scopus 로고
    • Evaluating probabilistic forecasts using information theory
    • Roulston, M.S., Smith, L.A., Evaluating probabilistic forecasts using information theory. Mon. Weather Rev. 130:6 (2002), 1653–1660.
    • (2002) Mon. Weather Rev. , vol.130 , Issue.6 , pp. 1653-1660
    • Roulston, M.S.1    Smith, L.A.2
  • 38
    • 0025670892 scopus 로고
    • The multilayer perceptron as an approximation to a Bayes optimal discriminant function
    • Ruck, D.W., Rogers, S.K., Kabrisky, M., Oxley, M.E., Suter, B.W., The multilayer perceptron as an approximation to a Bayes optimal discriminant function. IEEE Trans. Neural Network. 1:4 (1990), 296–298.
    • (1990) IEEE Trans. Neural Network. , vol.1 , Issue.4 , pp. 296-298
    • Ruck, D.W.1    Rogers, S.K.2    Kabrisky, M.3    Oxley, M.E.4    Suter, B.W.5
  • 39
    • 0031887636 scopus 로고    scopus 로고
    • Uncertainty, complexity and concepts of good science in climate change modelling: are GCMs the best tools?
    • Shackley, S., Young, P., Parkinson, S., Wynne, B., Uncertainty, complexity and concepts of good science in climate change modelling: are GCMs the best tools?. Climatic Change 38:2 (1998), 159–205.
    • (1998) Climatic Change , vol.38 , Issue.2 , pp. 159-205
    • Shackley, S.1    Young, P.2    Parkinson, S.3    Wynne, B.4
  • 40
    • 0032561498 scopus 로고    scopus 로고
    • Predictability in the midst of chaos: a scientific basis for climate forecasting
    • Shukla, J., Predictability in the midst of chaos: a scientific basis for climate forecasting. Science 282:5389 (1998), 728–731.
    • (1998) Science , vol.282 , Issue.5389 , pp. 728-731
    • Shukla, J.1
  • 41
    • 80052840333 scopus 로고    scopus 로고
    • Prediction of Indian summer monsoon rainfall using Nio indices: a neural network approach
    • Shukla, R.P., Tripathi, K.C., Pandey, A.C., Das, I.M.L., Prediction of Indian summer monsoon rainfall using Nio indices: a neural network approach. Atmos. Res. 102:1–2 (2011), 99–109.
    • (2011) Atmos. Res. , vol.102 , Issue.1-2 , pp. 99-109
    • Shukla, R.P.1    Tripathi, K.C.2    Pandey, A.C.3    Das, I.M.L.4
  • 42
    • 84883824540 scopus 로고    scopus 로고
    • Indian summer monsoon rainfall prediction using artificial neural network
    • Singh, P., Borah, B., Indian summer monsoon rainfall prediction using artificial neural network. Stoch. Environ. Res. Risk Assess. 27:7 (2013), 1585–1599.
    • (2013) Stoch. Environ. Res. Risk Assess. , vol.27 , Issue.7 , pp. 1585-1599
    • Singh, P.1    Borah, B.2
  • 43
    • 85145625743 scopus 로고    scopus 로고
    • Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering
    • CRC Press
    • Strogatz, S.H., Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. 2018, CRC Press.
    • (2018)
    • Strogatz, S.H.1
  • 44
    • 84959036487 scopus 로고    scopus 로고
    • On the progress of the 20152016 El Nio event
    • Varotsos, Costas A., Tzanis, Chris G., Sarlis, Nicholas V., On the progress of the 20152016 El Nio event. Atmos. Chem. Phys. 16:4 (2016), 2007–2011.
    • (2016) Atmos. Chem. Phys. , vol.16 , Issue.4 , pp. 2007-2011
    • Varotsos, C.A.1    Tzanis, C.G.2    Sarlis, N.V.3
  • 45
    • 84928411980 scopus 로고    scopus 로고
    • Precursory signals of the major El Nio southern oscillation events
    • Varotsos, C.A., Tzanis, C., Cracknell, A.P., Precursory signals of the major El Nio southern oscillation events. Theor. Appl. Climatol. 124:3–4 (2016), 903–912.
    • (2016) Theor. Appl. Climatol. , vol.124 , Issue.3-4 , pp. 903-912
    • Varotsos, C.A.1    Tzanis, C.2    Cracknell, A.P.3
  • 46
    • 85050861383 scopus 로고    scopus 로고
    • On the association between the recent episode of the quasi-biennial oscillation and the strong El Nio event
    • Varotsos, C.A., Sarlis, N.V., Efstathiou, M., On the association between the recent episode of the quasi-biennial oscillation and the strong El Nio event. Theor. Appl. Climatol., 2017, 1–9.
    • (2017) Theor. Appl. Climatol. , pp. 1-9
    • Varotsos, C.A.1    Sarlis, N.V.2    Efstathiou, M.3
  • 47
    • 0031504678 scopus 로고    scopus 로고
    • Prediction of all India summer monsoon rainfall using error-back-propagation neural networks
    • Venkatesan, C., Raskar, S.D., Tambe, S.S., Kulkarni, B.D., Keshavamurty, R.N., Prediction of all India summer monsoon rainfall using error-back-propagation neural networks. Meteorol. Atmos. Phys. 62:3–4 (1997), 225–240.
    • (1997) Meteorol. Atmos. Phys. , vol.62 , Issue.3-4 , pp. 225-240
    • Venkatesan, C.1    Raskar, S.D.2    Tambe, S.S.3    Kulkarni, B.D.4    Keshavamurty, R.N.5
  • 48
    • 0034424690 scopus 로고    scopus 로고
    • Quantifying chaos in the atmosphere
    • Washington, R., Quantifying chaos in the atmosphere. Prog. Phys. Geogr. 24:4 (2000), 499–514.
    • (2000) Prog. Phys. Geogr. , vol.24 , Issue.4 , pp. 499-514
    • Washington, R.1
  • 49
    • 0032170226 scopus 로고    scopus 로고
    • Multisite generalization of a daily stochastic precipitation generation model
    • Wilks, D.S., Multisite generalization of a daily stochastic precipitation generation model. J. Hydrol. 210:1–4 (1998), 178–191.
    • (1998) J. Hydrol. , vol.210 , Issue.1-4 , pp. 178-191
    • Wilks, D.S.1
  • 50
    • 0033548551 scopus 로고    scopus 로고
    • Interannual variability and extreme-value characteristics of several stochastic daily precipitation models
    • Wilks, D.S., Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric. For. Meteorol. 93:3 (1999), 153–169.
    • (1999) Agric. For. Meteorol. , vol.93 , Issue.3 , pp. 153-169
    • Wilks, D.S.1
  • 51
    • 41749095643 scopus 로고    scopus 로고
    • Cone model for halo CMEs: application to space weather forecasting
    • Xie, H., Ofman, L., Lawrence, G., Cone model for halo CMEs: application to space weather forecasting. J. Geophys. Res.: Space Physics, 109(A3), 2004.
    • (2004) J. Geophys. Res.: Space Physics , vol.109 , Issue.A3
    • Xie, H.1    Ofman, L.2    Lawrence, G.3
  • 52
    • 34247638957 scopus 로고    scopus 로고
    • Measuring information content from observations for data assimilation: relative entropy versus Shannon entropy difference
    • Xu, Q., Measuring information content from observations for data assimilation: relative entropy versus Shannon entropy difference. Tellus 59:2 (2007), 198–209.
    • (2007) Tellus , vol.59 , Issue.2 , pp. 198-209
    • Xu, Q.1
  • 53
    • 0027789617 scopus 로고
    • Chaos theory and its applications to the atmosphere
    • Zeng, X., Pielke, R.A., Eykholt, R., Chaos theory and its applications to the atmosphere. Bull. Am. Meteorol. Soc. 74:4 (1993), 631–644.
    • (1993) Bull. Am. Meteorol. Soc. , vol.74 , Issue.4 , pp. 631-644
    • Zeng, X.1    Pielke, R.A.2    Eykholt, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.