메뉴 건너뛰기




Volumn 33, Issue 10, 2018, Pages 947-952

Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates

Author keywords

Causal inference; Effect estimation; Genetic epidemiology; Instrumental variable; Mendelian randomization

Indexed keywords

ARTICLE; CAUSALITY; EXPOSURE VARIABLE; GENETIC VARIABILITY; INSTRUMENTAL VARIABLE ANALYSIS; MENDELIAN RANDOMIZATION ANALYSIS; OUTCOME VARIABLE; PARAMETRIC TEST; RISK FACTOR; BIOLOGICAL MODEL; BLOOD PRESSURE; GENETIC VARIATION; HUMAN; HYPERTENSION; PROCEDURES; RANDOMIZATION; STATISTICAL MODEL;

EID: 85050517030     PISSN: 03932990     EISSN: 15737284     Source Type: Journal    
DOI: 10.1007/s10654-018-0424-6     Document Type: Article
Times cited : (360)

References (27)
  • 1
    • 0034546907 scopus 로고    scopus 로고
    • The interpretation of instrumental variables estimators in simultaneous equations models with an application to the demand for fish
    • Angrist J, Graddy K, Imbens G. The interpretation of instrumental variables estimators in simultaneous equations models with an application to the demand for fish. Rev Econ Stud. 2000;67(3):499–527. 10.1111/1467-937x.00141
    • (2000) Rev Econ Stud , vol.67 , Issue.3 , pp. 499-527
    • Angrist, J.1    Graddy, K.2    Imbens, G.3
  • 2
    • 0346880128 scopus 로고    scopus 로고
    • Identification of causal effects using instrumental variables
    • Angrist J, Imbens G, Rubin D. Identification of causal effects using instrumental variables. J Am Stat Assoc. 1996;91(434):444–55. 10.2307/2291629
    • (1996) J Am Stat Assoc , vol.91 , Issue.434 , pp. 444-455
    • Angrist, J.1    Imbens, G.2    Rubin, D.3
  • 4
    • 84885823906 scopus 로고    scopus 로고
    • Beyond LATE: estimation of the average treatment effect with an instrumental variable
    • Aronow PM, Carnegie A. Beyond LATE: estimation of the average treatment effect with an instrumental variable. Pol Anal. 2013;21(4):492–506
    • (2013) Pol Anal , vol.21 , Issue.4 , pp. 492-506
    • Aronow, P.M.1    Carnegie, A.2
  • 5
    • 30244508525 scopus 로고    scopus 로고
    • Bounds on treatment effects from studies with imperfect compliance
    • Balke A, Pearl J. Bounds on treatment effects from studies with imperfect compliance. J Am Stat Assoc. 1997;92(439):1171–6. 10.1080/01621459.1997.10474074
    • (1997) J Am Stat Assoc , vol.92 , Issue.439 , pp. 1171-1176
    • Balke, A.1    Pearl, J.2
  • 6
    • 84936755918 scopus 로고    scopus 로고
    • Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
    • Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25
    • (2015) Int J Epidemiol , vol.44 , Issue.2 , pp. 512-525
    • Bowden, J.1    Davey Smith, G.2    Burgess, S.3
  • 7
    • 84963670568 scopus 로고    scopus 로고
    • Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator
    • Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14. 10.1002/gepi.21965
    • (2016) Genet Epidemiol , vol.40 , Issue.4 , pp. 304-314
    • Bowden, J.1    Davey Smith, G.2    Haycock, P.C.3    Burgess, S.4
  • 8
    • 84872042939 scopus 로고    scopus 로고
    • Use of Mendelian randomisation to assess potential benefit of clinical intervention
    • Burgess S, Butterworth A, Malarstig A, Thompson S. Use of Mendelian randomisation to assess potential benefit of clinical intervention. Br Med J. 2012;345:e7325. 10.1136/bmj.e7325
    • (2012) Br Med J , vol.345
    • Burgess, S.1    Butterworth, A.2    Malarstig, A.3    Thompson, S.4
  • 9
    • 84885840876 scopus 로고    scopus 로고
    • Mendelian randomization analysis with multiple genetic variants using summarized data
    • Burgess S, Butterworth AS, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65. 10.1002/gepi.21758
    • (2013) Genet Epidemiol , vol.37 , Issue.7 , pp. 658-665
    • Burgess, S.1    Butterworth, A.S.2    Thompson, S.G.3
  • 10
    • 84943354221 scopus 로고    scopus 로고
    • EPIC-InterAct Consortium: Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors
    • Burgess S, Scott R, Timpson N, Davey Smith G, Thompson SG. EPIC-InterAct Consortium: Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–52. 10.1007/s10654-015-0011-z
    • (2015) Eur J Epidemiol , vol.30 , Issue.7 , pp. 543-552
    • Burgess, S.1    Scott, R.2    Timpson, N.3    Davey Smith, G.4    Thompson, S.G.5
  • 12
    • 0037322022 scopus 로고    scopus 로고
    • ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?
    • Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22. 10.1093/ije/dyg070
    • (2003) Int J Epidemiol , vol.32 , Issue.1 , pp. 1-22
    • Davey Smith, G.1    Ebrahim, S.2
  • 13
    • 34547682094 scopus 로고    scopus 로고
    • Mendelian randomization as an instrumental variable approach to causal inference
    • Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res. 2007;16(4):309–30. 10.1177/0962280206077743
    • (2007) Stat Methods Med Res , vol.16 , Issue.4 , pp. 309-330
    • Didelez, V.1    Sheehan, N.2
  • 14
    • 85001759335 scopus 로고    scopus 로고
    • Assessing causality in associations between cannabis use and schizophrenia risk: a two-sample Mendelian randomization study
    • Gage SH, Jones HJ, Burgess S, Bowden J, Smith GD, Zammit S, Munafò MR. Assessing causality in associations between cannabis use and schizophrenia risk: a two-sample Mendelian randomization study. Psychol Med. 2017;. 10.1017/s0033291716003172
    • (2017) Psychol Med
    • Gage, S.H.1    Jones, H.J.2    Burgess, S.3    Bowden, J.4    Smith, G.D.5    Zammit, S.6    Munafò, M.R.7
  • 15
    • 33748106661 scopus 로고    scopus 로고
    • Instruments for causal inference: an epidemiologist’s dream?
    • Hernán M, Robins J. Instruments for causal inference: an epidemiologist’s dream? Epidemiology. 2006;17(4):360–72. 10.1097/01.ede.0000222409.00878.37
    • (2006) Epidemiology , vol.17 , Issue.4 , pp. 360-372
    • Hernán, M.1    Robins, J.2
  • 16
    • 27744471516 scopus 로고    scopus 로고
    • Meta-analysis of MTHFR 677C-T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate?
    • Lewis S, Ebrahim S, Davey Smith G. Meta-analysis of MTHFR 677C-T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate? Br Med J. 2005;331(7524):1053. 10.1136/bmj.38611.658947.55
    • (2005) Br Med J , vol.331 , Issue.7524 , pp. 1053
    • Lewis, S.1    Ebrahim, S.2    Davey Smith, G.3
  • 18
    • 84867606063 scopus 로고    scopus 로고
    • The effect of non-differential measurement error on bias, precision and power in Mendelian randomization studies
    • Pierce B, VanderWeele T. The effect of non-differential measurement error on bias, precision and power in Mendelian randomization studies. Int J Epidemiol. 2012;41(5):1383–93. 10.1093/ije/dys141
    • (2012) Int J Epidemiol , vol.41 , Issue.5 , pp. 1383-1393
    • Pierce, B.1    VanderWeele, T.2
  • 19
    • 82255183920 scopus 로고    scopus 로고
    • Likelihood analysis of the binary instrumental variable model
    • Ramsahai R, Lauritzen S. Likelihood analysis of the binary instrumental variable model. Biometrika. 2011;98(4):987–94. 10.1093/biomet/asr040
    • (2011) Biometrika , vol.98 , Issue.4 , pp. 987-994
    • Ramsahai, R.1    Lauritzen, S.2
  • 20
    • 85017441257 scopus 로고    scopus 로고
    • On modeling and estimation for the relative risk and risk difference
    • Richardson TS, Robins JM, Wang L. On modeling and estimation for the relative risk and risk difference. J Am Stat Assoc. 2017;112(519):1121–30. 10.1080/01621459.2016.1192546
    • (2017) J Am Stat Assoc , vol.112 , Issue.519 , pp. 1121-1130
    • Richardson, T.S.1    Robins, J.M.2    Wang, L.3
  • 21
    • 85050572558 scopus 로고    scopus 로고
    • Partial Identification of the Average Treatment Effect Using Instrumental Variables: Review of Methods for Binary Instruments, Treatments, and Outcomes
    • Swanson SA, Hernán MA, Miller M, Robins JM, Richardson T. Partial identification of the average treatment effect using instrumental variables: review of methods for binary instruments, treatments, and outcomes. J Ame Stat Assoc 2018. 10.1080/01621459.2018.1434530
    • (2018) Journal of the American Statistical Association , vol.113 , Issue.522 , pp. 933-947
    • Swanson, S.A.1    Hernán, M.A.2    Miller, M.3    Robins, J.M.4    Richardson, T.S.5
  • 22
    • 85020245258 scopus 로고    scopus 로고
    • Nature as a trialist?: deconstructing the analogy between Mendelian randomization and randomized trials
    • Swanson SA, Tiemeier H, Ikram MA, Hernán MA. Nature as a trialist?: deconstructing the analogy between Mendelian randomization and randomized trials. Epidemiology. 2017;28(5):653–9. 10.1097/ede.0000000000000699
    • (2017) Epidemiology , vol.28 , Issue.5 , pp. 653-659
    • Swanson, S.A.1    Tiemeier, H.2    Ikram, M.A.3    Hernán, M.A.4
  • 23
    • 84898050170 scopus 로고    scopus 로고
    • Methodological challenges in Mendelian randomization
    • VanderWeele T, Tchetgen Tchetgen E, Cornelis M, Kraft P. Methodological challenges in Mendelian randomization. Epidemiology. 2014;25(3):427–35. 10.1097/ede.0000000000000081
    • (2014) Epidemiology , vol.25 , Issue.3 , pp. 427-435
    • VanderWeele, T.1    Tchetgen Tchetgen, E.2    Cornelis, M.3    Kraft, P.4
  • 27
    • 1542574387 scopus 로고    scopus 로고
    • Inference for the complier-average causal effect from longitudinal data subject to noncompliance and missing data, with application to a job training assessment for the unemployed
    • Yau LH, Little RJ. Inference for the complier-average causal effect from longitudinal data subject to noncompliance and missing data, with application to a job training assessment for the unemployed. J Am Stat Assoc. 2001;96(456):1232–44. 10.1198/016214501753381887
    • (2001) J Am Stat Assoc , vol.96 , Issue.456 , pp. 1232-1244
    • Yau, L.H.1    Little, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.