메뉴 건너뛰기




Volumn 25, Issue 2, 2011, Pages 123-138

Links, comparisons and extensions of the geographically weighted regression model when used as a spatial predictor

Author keywords

Heteroskedastic; Local uncertainty; Relationship nonstationarity

Indexed keywords

REACTOR CORES; REGRESSION ANALYSIS;

EID: 78751617436     PISSN: 14363240     EISSN: 14363259     Source Type: Journal    
DOI: 10.1007/s00477-010-0444-6     Document Type: Article
Times cited : (52)

References (38)
  • 2
    • 33947097410 scopus 로고    scopus 로고
    • Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method
    • Bitter C, Mulligan GF, Dall'erba S (2007) Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method. J Geogr Syst 9: 7-27.
    • (2007) J Geogr Syst , vol.9 , pp. 7-27
    • Bitter, C.1    Mulligan, G.F.2    Dall'erba, S.3
  • 6
    • 0003412972 scopus 로고
    • CLAG Freshwaters, Critical Loads Advisory Group. Sub-report on Freshwaters. ITE, Penicuik
    • CLAG Freshwaters (1995) Critical loads of acid deposition for United Kingdom Freshwaters. Critical Loads Advisory Group. Sub-report on Freshwaters. ITE, Penicuik.
    • (1995) Critical loads of acid deposition for United Kingdom Freshwaters
  • 7
    • 33746496804 scopus 로고    scopus 로고
    • An empirical evaluation of spatial regression models
    • Gao X, Asami Y, Chung C (2006) An empirical evaluation of spatial regression models. Comput Geosci 32: 1040-1051.
    • (2006) Comput Geosci , vol.32 , pp. 1040-1051
    • Gao, X.1    Asami, Y.2    Chung, C.3
  • 8
  • 10
    • 0034881809 scopus 로고    scopus 로고
    • Geostatistical modelling of uncertainty in soil science
    • Goovaerts P (2001) Geostatistical modelling of uncertainty in soil science. Geoderma 103: 3-26.
    • (2001) Geoderma , vol.103 , pp. 3-26
    • Goovaerts, P.1
  • 11
    • 77954860974 scopus 로고    scopus 로고
    • The use of geographically weighted regression for spatial prediction: an evaluation of models using simulated data sets
    • Harris P, Fotheringham AS, Crespo R, Charlton M (2010a) The use of geographically weighted regression for spatial prediction: an evaluation of models using simulated data sets. Math Geosci 42: 657-680.
    • (2010) Math Geosci , vol.42 , pp. 657-680
    • Harris, P.1    Fotheringham, A.S.2    Crespo, R.3    Charlton, M.4
  • 12
    • 78650075320 scopus 로고    scopus 로고
    • Moving window kriging with geographically weighted variograms
    • doi: 10. 1007/s00477-010-0391-2
    • Harris P, Charlton M, Fotheringham AS (2010b) Moving window kriging with geographically weighted variograms. Stoch Environ Res Risk Assess 24: 1193-1209. doi: 10. 1007/s00477-010-0391-2.
    • (2010) Stoch Environ Res Risk Assess , vol.24 , pp. 1193-1209
    • Harris, P.1    Charlton, M.2    Fotheringham, A.S.3
  • 13
    • 77951287343 scopus 로고    scopus 로고
    • Robust geographically weighed regression: a technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes
    • Harris P, Fotheringham AS, Juggins S (2010c) Robust geographically weighed regression: a technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes. Ann Assoc Am Geogr 100(2): 286-306.
    • (2010) Ann Assoc Am Geogr , vol.100 , Issue.2 , pp. 286-306
    • Harris, P.1    Fotheringham, A.S.2    Juggins, S.3
  • 16
    • 0002126287 scopus 로고
    • Geostatistics: models and tools for the earth sciences
    • Journel AG (1986) Geostatistics: models and tools for the earth sciences. Math Geol 18: 119-140.
    • (1986) Math Geol , vol.18 , pp. 119-140
    • Journel, A.G.1
  • 17
    • 0032127846 scopus 로고    scopus 로고
    • Predicting freshwater critical loads of acidification at the catchment scale: an empirical model
    • Kernan MR, Allott TEH, Battarbee RW (1998) Predicting freshwater critical loads of acidification at the catchment scale: an empirical model. Water Air Soil Pollut 185: 31-41.
    • (1998) Water Air Soil Pollut , vol.185 , pp. 31-41
    • Kernan, M.R.1    Allott, T.E.H.2    Battarbee, R.W.3
  • 18
    • 70350711067 scopus 로고    scopus 로고
    • Predicting freshwater critical loads from catchment characteristics using national datasets
    • Kernan MR, Haliwell RC, Hughes MJ (2001) Predicting freshwater critical loads from catchment characteristics using national datasets. Water Air Soil Pollut Focus 1: 415-435.
    • (2001) Water Air Soil Pollut Focus , vol.1 , pp. 415-435
    • Kernan, M.R.1    Haliwell, R.C.2    Hughes, M.J.3
  • 19
    • 34249821654 scopus 로고    scopus 로고
    • Incorporating spatial non-stationarity of regression coefficients into predictive vegetation models
    • Kupfer JA, Farris CA (2007) Incorporating spatial non-stationarity of regression coefficients into predictive vegetation models. Landsc Ecol 22: 837-852.
    • (2007) Landsc Ecol , vol.22 , pp. 837-852
    • Kupfer, J.A.1    Farris, C.A.2
  • 20
    • 84950461221 scopus 로고
    • Kriging and splines: an empirical comparison of their predictive performance in some applications
    • Laslett GM (1994) Kriging and splines: an empirical comparison of their predictive performance in some applications. J Am Stat Assoc 89: 391-409.
    • (1994) J Am Stat Assoc , vol.89 , pp. 391-409
    • Laslett, G.M.1
  • 21
    • 0034094265 scopus 로고    scopus 로고
    • Statistical tests for spatial nonstationarity based on the geographically weighted regression model
    • Leung Y, Mei C, Zhang W (2000) Statistical tests for spatial nonstationarity based on the geographically weighted regression model. Environ Plann 32: 9-32.
    • (2000) Environ Plann , vol.32 , pp. 9-32
    • Leung, Y.1    Mei, C.2    Zhang, W.3
  • 22
    • 76849091165 scopus 로고    scopus 로고
    • Nonstationary models for exploring and mapping monthly precipitation in the United Kingdom
    • Lloyd CD (2010) Nonstationary models for exploring and mapping monthly precipitation in the United Kingdom. Int J Climatol 30: 390-405.
    • (2010) Int J Climatol , vol.30 , pp. 390-405
    • Lloyd, C.D.1
  • 23
    • 33644747742 scopus 로고    scopus 로고
    • Smoothing: local regression techniques
    • J. Gentle, W. Härdle, and Y. Mori (Eds.), Heidelberg: Springer-Verlag
    • Loader C (2004) Smoothing: local regression techniques. In: Gentle J, Härdle W, Mori Y (eds) Handbook of computational statistics. Springer-Verlag, Heidelberg.
    • (2004) Handbook of Computational Statistics
    • Loader, C.1
  • 25
    • 0003537309 scopus 로고
    • J. Nilsson and P. Grennfelt (Eds.), Copenhagen: Nordic Council of Ministers
    • Nilsson J, Grennfelt P (eds) (1988) Critical loads for sulphur and nitrogen. Nordic Council of Ministers, Copenhagen.
    • (1988) Critical Loads for Sulphur and Nitrogen
  • 26
    • 45149127477 scopus 로고    scopus 로고
    • Moving window approaches for hedonic price estimation: an empirical comparison of modelling techniques
    • Páez A, Long F, Farber S (2008) Moving window approaches for hedonic price estimation: an empirical comparison of modelling techniques. Urban Stud 45: 1565-1581.
    • (2008) Urban Stud , vol.45 , pp. 1565-1581
    • Páez, A.1    Long, F.2    Farber, S.3
  • 27
    • 78751611916 scopus 로고    scopus 로고
    • Characterization of forest resources with satellite spot images by using local models of co-regionalization
    • Kleingeld WJ, Krige DG (eds), Geostatistical Association of Southern Africa
    • Pereira MJ, Soares A, Rosario L (2002) Characterization of forest resources with satellite spot images by using local models of co-regionalization. In: Kleingeld WJ, Krige DG (eds) Geostatistics 2000 Cape Town. Geostatistical Association of Southern Africa.
    • (2002) Geostatistics 2000 Cape Town
    • Pereira, M.J.1    Soares, A.2    Rosario, L.3
  • 28
    • 1242285898 scopus 로고
    • Teacher's Aide-two key parameters when choosing the kriging neighbourhood
    • Rivoirard J (1987) Teacher's Aide-two key parameters when choosing the kriging neighbourhood. Math Geol 19(8): 851-856.
    • (1987) Math Geol , vol.19 , Issue.8 , pp. 851-856
    • Rivoirard, J.1
  • 29
    • 77949487082 scopus 로고    scopus 로고
    • Modelling tree diameter from airborne laser scanning derived variables: a comparison of spatial statistical models
    • Salas C, Ene L, Gregoire TG, Næsset E, Gobakken T (2010) Modelling tree diameter from airborne laser scanning derived variables: a comparison of spatial statistical models. Remote Sens Environ 114: 1277-1285.
    • (2010) Remote Sens Environ , vol.114 , pp. 1277-1285
    • Salas, C.1    Ene, L.2    Gregoire, T.G.3    Næsset, E.4    Gobakken, T.5
  • 31
    • 0027868252 scopus 로고
    • The spatial variability of prediction errors
    • (A. Soares, Ed.)
    • Switzer P (1993) The spatial variability of prediction errors. In Geostatistics Troia 92 (A. Soares, Ed.) pp. 261-272.
    • (1993) Geostatistics Troia , vol.92 , pp. 261-272
    • Switzer, P.1
  • 32
    • 0034981120 scopus 로고    scopus 로고
    • Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold
    • van Meirvenne M, Goovaerts P (2001) Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold. Geoderma 102: 75-100.
    • (2001) Geoderma , vol.102 , pp. 75-100
    • van Meirvenne, M.1    Goovaerts, P.2
  • 34
    • 34347375816 scopus 로고    scopus 로고
    • Quantifying geographic variations in associations between alcohol distribution and violence: a comparison of geographically weighted regression and spatially varying coefficient models
    • Waller LA, Zhu L, Gotway CA, Gorman DM, Grunewald PJ (2007) Quantifying geographic variations in associations between alcohol distribution and violence: a comparison of geographically weighted regression and spatially varying coefficient models. Stoch Environ Res Risk Assess 21: 573-588.
    • (2007) Stoch Environ Res Risk Assess , vol.21 , pp. 573-588
    • Waller, L.A.1    Zhu, L.2    Gotway, C.A.3    Gorman, D.M.4    Grunewald, P.J.5
  • 35
    • 35648994302 scopus 로고    scopus 로고
    • Diagnostic tools and a remedial method for collinearity in geographically weighted regression
    • Wheeler D (2007) Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environ Plann 39: 2464-2481.
    • (2007) Environ Plann , vol.39 , pp. 2464-2481
    • Wheeler, D.1
  • 36
    • 66249126303 scopus 로고    scopus 로고
    • Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso
    • Wheeler D (2009) Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso. Environ Plann 41: 722-742.
    • (2009) Environ Plann , vol.41 , pp. 722-742
    • Wheeler, D.1
  • 37
    • 60649107800 scopus 로고    scopus 로고
    • Comparing spatially varying coefficient models: a case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests
    • Wheeler D, Waller L (2009) Comparing spatially varying coefficient models: a case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests. J Geogr Syst 11: 1-22.
    • (2009) J Geogr Syst , vol.11 , pp. 1-22
    • Wheeler, D.1    Waller, L.2
  • 38
    • 21344459257 scopus 로고    scopus 로고
    • Spatial residual analysis of six modelling techniques
    • Zhang L, Gove JH, Heath LS (2005) Spatial residual analysis of six modelling techniques. Ecol Modell 186: 154-177.
    • (2005) Ecol Modell , vol.186 , pp. 154-177
    • Zhang, L.1    Gove, J.H.2    Heath, L.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.