메뉴 건너뛰기




Volumn 30, Issue 2, 2016, Pages 351-368

The Minkowski approach for choosing the distance metric in geographically weighted regression

Author keywords

GW model; Minkowski distance; Non stationarity; simulation experiment

Indexed keywords

EXPERIMENTAL STUDY; GIS; NUMERICAL MODEL; REGRESSION ANALYSIS;

EID: 84948075260     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2015.1087001     Document Type: Article
Times cited : (62)

References (35)
  • 2
    • 0041530204 scopus 로고    scopus 로고
    • Space varying coefficient models for small area data
    • R.M.Assunção,, 2003. Space varying coefficient models for small area data. Environmetrics, 14 (5), 453–473. doi:10.1002/env.599
    • (2003) Environmetrics , vol.14 , Issue.5 , pp. 453-473
    • Assunção, R.M.1
  • 3
    • 79952631603 scopus 로고    scopus 로고
    • Programs for kriging and sequential Gaussian simulation with locally varying anisotropy using non-Euclidean distances
    • J.B.Boisvert, and C.V.Deutsch,, 2011. Programs for kriging and sequential Gaussian simulation with locally varying anisotropy using non-Euclidean distances. Computers & Geosciences, 37 (4), 495–510. doi:10.1016/j.cageo.2010.03.021
    • (2011) Computers & Geosciences , vol.37 , Issue.4 , pp. 495-510
    • Boisvert, J.B.1    Deutsch, C.V.2
  • 5
    • 0030432956 scopus 로고    scopus 로고
    • Geographically weighted regression: a method for exploring spatial nonstationarity
    • C.Brunsdon,, A.S.Fotheringham,, and M.E.Charlton,, 1996. Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28 (4), 281–298. doi:10.1111/j.1538-4632.1996.tb00936.x
    • (1996) Geographical Analysis , vol.28 , Issue.4 , pp. 281-298
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.E.3
  • 7
    • 84982770928 scopus 로고
    • Generating models by the expansion method: applications to geographical research
    • E.Casetti,, 1972. Generating models by the expansion method: applications to geographical research. Geographical Analysis, 4 (1), 81–91. doi:10.1111/j.1538-4632.1972.tb00458.x
    • (1972) Geographical Analysis , vol.4 , Issue.1 , pp. 81-91
    • Casetti, E.1
  • 8
    • 0141749319 scopus 로고    scopus 로고
    • Specification and estimation of spatial panel data models
    • J.Elhorst,, 2003. Specification and estimation of spatial panel data models. International Regional Science Review, 26 (3), 244–268. doi:10.1177/0160017603253791
    • (2003) International Regional Science Review , vol.26 , Issue.3 , pp. 244-268
    • Elhorst, J.1
  • 9
    • 0343861903 scopus 로고    scopus 로고
    • Local forms of spatial analysis
    • A.S.Fotheringham, and C.Brunsdon,, 1999. Local forms of spatial analysis. Geographical Analysis, 31 (4), 340–358. doi:10.1111/j.1538-4632.1999.tb00989.x
    • (1999) Geographical Analysis , vol.31 , Issue.4 , pp. 340-358
    • Fotheringham, A.S.1    Brunsdon, C.2
  • 11
    • 0032434789 scopus 로고    scopus 로고
    • Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis
    • A.S.Fotheringham,, M.E.Charlton,, and C.Brunsdon,, 1998. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30 (11), 1905–1927. doi:10.1068/a301905
    • (1998) Environment and Planning A , vol.30 , Issue.11 , pp. 1905-1927
    • Fotheringham, A.S.1    Charlton, M.E.2    Brunsdon, C.3
  • 12
    • 0042744714 scopus 로고    scopus 로고
    • Spatial modeling with spatially varying coefficient processes
    • A.E.Gelfand,, et al., 2003. Spatial modeling with spatially varying coefficient processes. Journal of the American Statistical Association, 98 (462), 387–396. doi:10.1198/016214503000170
    • (2003) Journal of the American Statistical Association , vol.98 , Issue.462 , pp. 387-396
    • Gelfand, A.E.1
  • 13
    • 84922560278 scopus 로고    scopus 로고
    • GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models
    • I.Gollini,, et al., 2015. GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models. Journal of Statistical Software, 63 (17), 1–50.
    • (2015) Journal of Statistical Software , vol.63 , Issue.17 , pp. 1-50
    • Gollini, I.1
  • 14
    • 60649112018 scopus 로고    scopus 로고
    • Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR)
    • D.A.Griffith,, 2008. Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environment and Planning A, 40 (11), 2751–2769. doi:10.1068/a38218
    • (2008) Environment and Planning A , vol.40 , Issue.11 , pp. 2751-2769
    • Griffith, D.A.1
  • 15
    • 77954860974 scopus 로고    scopus 로고
    • The use of geographically weighted regression for spatial prediction: an evaluation of models using simulated data sets
    • P.Harris,, et al., 2010a. The use of geographically weighted regression for spatial prediction: an evaluation of models using simulated data sets. Mathematical Geosciences, 42 (6), 657–680. doi:10.1007/s11004-010-9284-7
    • (2010) Mathematical Geosciences , vol.42 , Issue.6 , pp. 657-680
    • Harris, P.1
  • 16
    • 77951287343 scopus 로고    scopus 로고
    • Robust geographically weighted regression: a technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes
    • P.Harris,, A.S.Fotheringham,, and S.Juggins,, 2010b. Robust geographically weighted regression: a technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes. Annals of the Association of American Geographers, 100 (2), 286–306. doi:10.1080/00045600903550378
    • (2010) Annals of the Association of American Geographers , vol.100 , Issue.2 , pp. 286-306
    • Harris, P.1    Fotheringham, A.S.2    Juggins, S.3
  • 17
    • 74949130472 scopus 로고    scopus 로고
    • Grid-enabling geographically weighted regression: a case study of participation in higher education in England
    • R.Harris,, et al., 2010c. Grid-enabling geographically weighted regression: a case study of participation in higher education in England. Transactions in GIS, 14 (1), 43–61. doi:10.1111/tgis.2010.14.issue-1
    • (2010) Transactions in GIS , vol.14 , Issue.1 , pp. 43-61
    • Harris, R.1
  • 19
    • 0026339718 scopus 로고
    • Specifying and estimating multi-level models for geographical research
    • K.Jones,, 1991. Specifying and estimating multi-level models for geographical research. Transactions of the Institute of British Geographers, 16 (2), 148–159. doi:10.2307/622610
    • (1991) Transactions of the Institute of British Geographers , vol.16 , Issue.2 , pp. 148-159
    • Jones, K.1
  • 20
    • 33644623130 scopus 로고    scopus 로고
    • Evaluating the usefulness of functional distance measures when calibrating journey-to-crime distance decay functions
    • J.Kent,, M.Leitner,, and A.Curtis,, 2006. Evaluating the usefulness of functional distance measures when calibrating journey-to-crime distance decay functions. Computers, Environment and Urban Systems, 30 (2), 181–200. doi:10.1016/j.compenvurbsys.2004.10.002
    • (2006) Computers, Environment and Urban Systems , vol.30 , Issue.2 , pp. 181-200
    • Kent, J.1    Leitner, M.2    Curtis, A.3
  • 22
    • 44449176057 scopus 로고    scopus 로고
    • Spatial prediction of river channel topography by kriging
    • C.J.Legleiter, and P.C.Kyriakidis,, 2008. Spatial prediction of river channel topography by kriging. Earth Surface Processes and Landforms, 33 (6), 841–867. doi:10.1002/(ISSN)1096-9837
    • (2008) Earth Surface Processes and Landforms , vol.33 , Issue.6 , pp. 841-867
    • Legleiter, C.J.1    Kyriakidis, P.C.2
  • 24
    • 84857414565 scopus 로고    scopus 로고
    • Geographically weighted regression using a non-Euclidean distance metric with a study on London house price data
    • B.Lu,, M.Charlton,, and A.S.Fotheringham,, 2011. Geographically weighted regression using a non-Euclidean distance metric with a study on London house price data. Procedia Environmental Sciences, 7, 92–97. doi:10.1016/j.proenv.2011.07.017
    • (2011) Procedia Environmental Sciences , vol.7 , pp. 92-97
    • Lu, B.1    Charlton, M.2    Fotheringham, A.S.3
  • 26
    • 84894273575 scopus 로고    scopus 로고
    • Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data
    • B.Lu,, et al., 2014a. Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data. International Journal of Geographical Information Science, 28 (4), 660–681. doi:10.1080/13658816.2013.865739
    • (2014) International Journal of Geographical Information Science , vol.28 , Issue.4 , pp. 660-681
    • Lu, B.1
  • 27
    • 84901651260 scopus 로고    scopus 로고
    • The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models
    • B.Lu,, et al., 2014b. The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models. Geo-Spatial Information Science, 17 (2), 85–101. doi:10.1080/10095020.2014.917453
    • (2014) Geo-Spatial Information Science , vol.17 , Issue.2 , pp. 85-101
    • Lu, B.1
  • 28
    • 1342332439 scopus 로고    scopus 로고
    • Representation and spatial analysis in geographic information systems
    • H.J.Miller, and E.A.Wentz,, 2003. Representation and spatial analysis in geographic information systems. Annals of the Association of American Geographers, 93 (3), 574–594. doi:10.1111/1467-8306.9303004
    • (2003) Annals of the Association of American Geographers , vol.93 , Issue.3 , pp. 574-594
    • Miller, H.J.1    Wentz, E.A.2
  • 29
    • 66249122409 scopus 로고    scopus 로고
    • Modern space/time geostatistics using river distances: data integration of turbidity and E. coli measurements to assess fecal contamination along the Raritan River in New Jersey
    • E.S.Money,, G.P.Carter,, and M.L.Serre,, 2009. Modern space/time geostatistics using river distances: data integration of turbidity and E. coli measurements to assess fecal contamination along the Raritan River in New Jersey. Environmental Science & Technology, 43 (10), 3736–3742. doi:10.1021/es803236j
    • (2009) Environmental Science & Technology , vol.43 , Issue.10 , pp. 3736-3742
    • Money, E.S.1    Carter, G.P.2    Serre, M.L.3
  • 30
    • 10244255200 scopus 로고    scopus 로고
    • Anisotropic variance functions in geographically weighted regression models
    • A.Páez,, 2004. Anisotropic variance functions in geographically weighted regression models. Geographical Analysis, 36 (4), 299–314. doi:10.1111/gean.2004.36.issue-4
    • (2004) Geographical Analysis , vol.36 , Issue.4 , pp. 299-314
    • Páez, A.1
  • 31
    • 83455179706 scopus 로고    scopus 로고
    • A simulation-based study of geographically weighted regression as a method for investigating spatially varying relationships
    • A.Páez,, S.Farber,, and D.Wheeler,, 2011. A simulation-based study of geographically weighted regression as a method for investigating spatially varying relationships. Environment and Planning A, 43 (12), 2992–3010. doi:10.1068/a44111
    • (2011) Environment and Planning A , vol.43 , Issue.12 , pp. 2992-3010
    • Páez, A.1    Farber, S.2    Wheeler, D.3
  • 32
  • 34
    • 72949091290 scopus 로고    scopus 로고
    • Comparison of distance measures in spatial analytical modeling for health service planning
    • R.Shahid,, et al., 2009. Comparison of distance measures in spatial analytical modeling for health service planning. BMC Health Services Research, 9 (1), 200–214. doi:10.1186/1472-6963-9-200
    • (2009) BMC Health Services Research , vol.9 , Issue.1
    • Shahid, R.1
  • 35
    • 43349090561 scopus 로고    scopus 로고
    • Local linear estimation of spatially varying coefficient models: an improvement on the geographically weighted regression technique
    • N.Wang,, C.-L.Mei,, and X.-D.Yan,, 2008. Local linear estimation of spatially varying coefficient models: an improvement on the geographically weighted regression technique. Environment and Planning A, 40 (4), 986–1005. doi:10.1068/a3941
    • (2008) Environment and Planning A , vol.40 , Issue.4 , pp. 986-1005
    • Wang, N.1    Mei, C.-L.2    Yan, X.-D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.