메뉴 건너뛰기




Volumn 152, Issue , 2018, Pages 109-116

Mapping wheat rust based on high spatial resolution satellite imagery

Author keywords

Feature selection; Mapping; Multispectral remote sensing; Support vector machine; Wheat rust

Indexed keywords

DECISION TREES; DISEASE CONTROL; FEATURE EXTRACTION; MAPPING; PHOTOMAPPING; REMOTE SENSING; SUPPORT VECTOR MACHINES; VEGETATION;

EID: 85049726138     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2018.07.002     Document Type: Article
Times cited : (35)

References (42)
  • 1
    • 84986879786 scopus 로고    scopus 로고
    • Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements
    • Ashourloo, D., Mobasheri, M.R., Huete, A., Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements. Remote Sens. 6:6 (2014), 5107–5123.
    • (2014) Remote Sens. , vol.6 , Issue.6 , pp. 5107-5123
    • Ashourloo, D.1    Mobasheri, M.R.2    Huete, A.3
  • 3
    • 0037327654 scopus 로고    scopus 로고
    • Early disease detection in wheat fields using spectral reflectance
    • Bravo, C., Moshou, D., West, J., Mccartney, A., Ramon, H., Early disease detection in wheat fields using spectral reflectance. Biosyst. Eng. 84:2 (2003), 137–145.
    • (2003) Biosyst. Eng. , vol.84 , Issue.2 , pp. 137-145
    • Bravo, C.1    Moshou, D.2    West, J.3    Mccartney, A.4    Ramon, H.5
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 0035031849 scopus 로고    scopus 로고
    • Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density
    • Broge, N.H., Leblanc, E., Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 76:2 (2001), 156–172.
    • (2001) Remote Sens. Environ. , vol.76 , Issue.2 , pp. 156-172
    • Broge, N.H.1    Leblanc, E.2
  • 8
    • 0020642209 scopus 로고
    • A quantitative method to test for consistency and correctness in photointerpretation
    • Congalton, R.G., Mead, R.A., A quantitative method to test for consistency and correctness in photointerpretation. Photogrammetr. Eng. Remote Sens. 49:1 (1983), 69–74.
    • (1983) Photogrammetr. Eng. Remote Sens. , vol.49 , Issue.1 , pp. 69-74
    • Congalton, R.G.1    Mead, R.A.2
  • 10
    • 0030453414 scopus 로고    scopus 로고
    • Use of a green channel in remote sensing of global vegetation from EOS-MODIS
    • Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N., Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 58:3 (1996), 289–298.
    • (1996) Remote Sens. Environ. , vol.58 , Issue.3 , pp. 289-298
    • Gitelson, A.A.1    Kaufman, Y.J.2    Merzlyak, M.N.3
  • 11
    • 0030453414 scopus 로고    scopus 로고
    • Use of a green channel in remote sensing of global vegetation from eos-modis
    • Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N., Use of a green channel in remote sensing of global vegetation from eos-modis. Remote Sens. Environ. 58:3 (1997), 289–298.
    • (1997) Remote Sens. Environ. , vol.58 , Issue.3 , pp. 289-298
    • Gitelson, A.A.1    Kaufman, Y.J.2    Merzlyak, M.N.3
  • 12
    • 0021892045 scopus 로고
    • Imaging spectrometry for earth remote sensing
    • Goetz, A.F., Vane, G., Solomon, J.E., Rock, B.N., Imaging spectrometry for earth remote sensing. Science 228:4704 (1985), 1147–1153.
    • (1985) Science , vol.228 , Issue.4704 , pp. 1147-1153
    • Goetz, A.F.1    Vane, G.2    Solomon, J.E.3    Rock, B.N.4
  • 13
    • 1842431418 scopus 로고    scopus 로고
    • Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture
    • Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B., Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90:3 (2004), 337–352.
    • (2004) Remote Sens. Environ. , vol.90 , Issue.3 , pp. 337-352
    • Haboudane, D.1    Miller, J.R.2    Pattey, E.3    Zarco-Tejada, P.J.4    Strachan, I.B.5
  • 14
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Ham, J., Chen, Y., Crawford, M.M., Ghosh, J., Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43:3 (2005), 492–501.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 17
    • 70449395526 scopus 로고    scopus 로고
    • Mapping whitebark pine mortality caused by a mountain pine beetle outbreak with high spatial resolution satellite imagery
    • Hicke, J.A., Logan, J., Mapping whitebark pine mortality caused by a mountain pine beetle outbreak with high spatial resolution satellite imagery. Int. J. Remote Sens. 30:17 (2009), 4427–444104.
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.17 , pp. 4427-444104
    • Hicke, J.A.1    Logan, J.2
  • 18
    • 35948985621 scopus 로고    scopus 로고
    • Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging
    • Huang, W., Lamb, D.W., Niu, Z., Zhang, Y., Liu, L., Wang, J., Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agric. 8:4–5 (2007), 187–197.
    • (2007) Precision Agric. , vol.8 , Issue.4-5 , pp. 187-197
    • Huang, W.1    Lamb, D.W.2    Niu, Z.3    Zhang, Y.4    Liu, L.5    Wang, J.6
  • 19
    • 0024165401 scopus 로고
    • A soil-adjusted vegetation index (SAVI)
    • Huete, A.R., A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25:3 (1988), 295–309.
    • (1988) Remote Sens. Environ. , vol.25 , Issue.3 , pp. 295-309
    • Huete, A.R.1
  • 21
    • 0035509491 scopus 로고    scopus 로고
    • Atmospheric correction of landsat etm+ land surface imagery. I. Methods
    • Liang, S., Fang, H., Chen, M., Atmospheric correction of landsat etm+ land surface imagery. I. Methods. IEEE Trans. Geosci. Remote Sens. 39:11 (2001), 2490–2498.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.11 , pp. 2490-2498
    • Liang, S.1    Fang, H.2    Chen, M.3
  • 23
    • 84946944655 scopus 로고    scopus 로고
    • Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale
    • Lin, Y., Pu, R., Zhang, J., Wang, J., Hao, Y., Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale. Precision Agric. 17:3 (2016), 332–348.
    • (2016) Precision Agric. , vol.17 , Issue.3 , pp. 332-348
    • Lin, Y.1    Pu, R.2    Zhang, J.3    Wang, J.4    Hao, Y.5
  • 24
    • 84984993984 scopus 로고    scopus 로고
    • A survey on feature selection
    • Miao, J., Niu, L., A survey on feature selection. Procedia Comput. Sci. 91 (2016), 919–926.
    • (2016) Procedia Comput. Sci. , vol.91 , pp. 919-926
    • Miao, J.1    Niu, L.2
  • 25
    • 4644270221 scopus 로고    scopus 로고
    • Automatic detection of yellow rust in wheat using reflectance measurements and neural networks
    • Moshou, D., Bravo, C., West, J., Wahlen, S., McCartney, A., Ramon, H., Automatic detection of yellow rust in wheat using reflectance measurements and neural networks. Comput. Electron. Agric. 44:3 (2004), 173–188.
    • (2004) Comput. Electron. Agric. , vol.44 , Issue.3 , pp. 173-188
    • Moshou, D.1    Bravo, C.2    West, J.3    Wahlen, S.4    McCartney, A.5    Ramon, H.6
  • 26
    • 20444470294 scopus 로고    scopus 로고
    • Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps
    • Moshou, D., Bravo, C., Oberti, R., West, J., Bodria, L., McCartney, A., Ramon, H., Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real-Time Imaging 11:2 (2005), 75–83.
    • (2005) Real-Time Imaging , vol.11 , Issue.2 , pp. 75-83
    • Moshou, D.1    Bravo, C.2    Oberti, R.3    West, J.4    Bodria, L.5    McCartney, A.6    Ramon, H.7
  • 27
    • 0141504020 scopus 로고    scopus 로고
    • Feature vector based analysis of hyperspectral crop reflectance data for discrimination and quantification of fungal disease severity in wheat
    • Muhammed, H.H., Larsolle, A., Feature vector based analysis of hyperspectral crop reflectance data for discrimination and quantification of fungal disease severity in wheat. Biosyst. Eng. 86:2 (2003), 125–134.
    • (2003) Biosyst. Eng. , vol.86 , Issue.2 , pp. 125-134
    • Muhammed, H.H.1    Larsolle, A.2
  • 28
    • 33845703344 scopus 로고    scopus 로고
    • What is a support vector machine?
    • Noble, W.S., What is a support vector machine?. Nat. Biotechnol. 24:12 (2006), 1565–1567.
    • (2006) Nat. Biotechnol. , vol.24 , Issue.12 , pp. 1565-1567
    • Noble, W.S.1
  • 29
    • 84870532133 scopus 로고    scopus 로고
    • Using worldview-2 bands and indices to predict bronze bug (Thaumastocoris peregrinus) damage in plantation forests
    • Oumar, Z., Mutanga, O., Using worldview-2 bands and indices to predict bronze bug (Thaumastocoris peregrinus) damage in plantation forests. Int. J. Remote Sens. 34:6 (2013), 2236–2249.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.6 , pp. 2236-2249
    • Oumar, Z.1    Mutanga, O.2
  • 31
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimization: a fast algorithm for training support vector machines
    • Platt, J.C., Sequential minimal optimization: a fast algorithm for training support vector machines. Adv. Kernel Meth.-Support Vec. Learn. 208 (1998), 212–223.
    • (1998) Adv. Kernel Meth.-Support Vec. Learn. , vol.208 , pp. 212-223
    • Platt, J.C.1
  • 33
    • 85049744506 scopus 로고    scopus 로고
    • Using Hyperspectral Remote Sensing Identification of Wheat Take-All Based on SVM
    • Springer International Publishing
    • Qiao, H., Jiao, H., Shi, Y., Shi, L., Guo, W., Ma, X., Using Hyperspectral Remote Sensing Identification of Wheat Take-All Based on SVM. 2014, Springer International Publishing.
    • (2014)
    • Qiao, H.1    Jiao, H.2    Shi, Y.3    Shi, L.4    Guo, W.5    Ma, X.6
  • 36
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests: a survey and results of new tests
    • Verikas, A., Gelzinis, A., Bacauskiene, M., Mining data with random forests: a survey and results of new tests. Pattern Recogn. 44:2 (2011), 330–349.
    • (2011) Pattern Recogn. , vol.44 , Issue.2 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 37
    • 3843063306 scopus 로고    scopus 로고
    • Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002
    • Wan, A., Zhao, Z., Chen, X., He, Z., Jin, S., Jia, Q., Yao, G., Yang, J., Wang, B., Li, G., et al. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis. 88:8 (2004), 896–904.
    • (2004) Plant Dis. , vol.88 , Issue.8 , pp. 896-904
    • Wan, A.1    Zhao, Z.2    Chen, X.3    He, Z.4    Jin, S.5    Jia, Q.6    Yao, G.7    Yang, J.8    Wang, B.9    Li, G.10
  • 38
    • 34347332451 scopus 로고    scopus 로고
    • Wheat stripe rust in China
    • Wan, A.M., Chen, X.M., He, Z., Wheat stripe rust in China. Crop Past. Sci. 58:6 (2007), 605–619.
    • (2007) Crop Past. Sci. , vol.58 , Issue.6 , pp. 605-619
    • Wan, A.M.1    Chen, X.M.2    He, Z.3
  • 39
    • 84870554920 scopus 로고    scopus 로고
    • Monitoring wheat stripe rust using remote sensing technologies in China
    • Wang, H., Guo, J., Ma, Z., Monitoring wheat stripe rust using remote sensing technologies in China. Comput. Comput. Technol. Agric. V, 2012, 163–175.
    • (2012) Comput. Comput. Technol. Agric. V , pp. 163-175
    • Wang, H.1    Guo, J.2    Ma, Z.3
  • 40
    • 84859936093 scopus 로고    scopus 로고
    • Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements
    • Zhang, J.C., Pu, R.L., Wang, J.H., Huang, W.J., Yuan, L., Luo, J.H., Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Comput. Electron. Agric. 85:1 (2012), 13–23.
    • (2012) Comput. Electron. Agric. , vol.85 , Issue.1 , pp. 13-23
    • Zhang, J.C.1    Pu, R.L.2    Wang, J.H.3    Huang, W.J.4    Yuan, L.5    Luo, J.H.6
  • 41
    • 84954025768 scopus 로고    scopus 로고
    • Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale
    • Zhang, J., Huang, Y., Yuan, L., Yang, G., Chen, L., Zhao, C., Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale. Pest Manage. Sci., 72(2), 2015, 335.
    • (2015) Pest Manage. Sci. , vol.72 , Issue.2 , pp. 335
    • Zhang, J.1    Huang, Y.2    Yuan, L.3    Yang, G.4    Chen, L.5    Zhao, C.6
  • 42
    • 84954025768 scopus 로고    scopus 로고
    • Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale
    • Zhang, J., Huang, Y., Yuan, L., Yang, G., Chen, L., Zhao, C., Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale. Pest Manage. Sci., 72(2), 2016, 335.
    • (2016) Pest Manage. Sci. , vol.72 , Issue.2 , pp. 335
    • Zhang, J.1    Huang, Y.2    Yuan, L.3    Yang, G.4    Chen, L.5    Zhao, C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.