메뉴 건너뛰기




Volumn 13, Issue 7, 2018, Pages

A machine learning method to monitor China’s AIDS epidemics with data from Baidu trends

Author keywords

[No Author keywords available]

Indexed keywords

ACQUIRED IMMUNE DEFICIENCY SYNDROME; ARTICLE; ARTIFICIAL NEURAL NETWORK; CHINA; CORRELATION COEFFICIENT; DEATH; DISEASE SURVEILLANCE; EPIDEMIC; FORECASTING; HUMAN; INCIDENCE; INTERNET; MACHINE LEARNING; PERCEPTRON; SEARCH ENGINE; STATISTICS AND NUMERICAL DATA;

EID: 85049671497     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0199697     Document Type: Article
Times cited : (22)

References (30)
  • 1
    • 79954599356 scopus 로고    scopus 로고
    • Scientific approaches to AIDS prevention and control in China
    • PMID: 21441473
    • Teng T, Shao Y. Scientific approaches to AIDS prevention and control in China. Adv Dent Res. 2011; 23(1): 10–12. https://doi.org/10.1177/0022034511398871 PMID: 21441473
    • (2011) Adv Dent Res , vol.23 , Issue.1 , pp. 10-12
    • Teng, T.1    Shao, Y.2
  • 2
    • 78649803241 scopus 로고    scopus 로고
    • Quantitatively monitoring AIDS policy implementation in China
    • PMID: 21113042
    • Liu Y, Wu Z, Mao Y, Rou K, Wang L, Zhang F. Quantitatively monitoring AIDS policy implementation in China. Int J Epidemiol. 2010; 39: ii90–ii96. https://doi.org/10.1093/ije/dyq214 PMID: 21113042
    • (2010) Int J Epidemiol , vol.39 , pp. ii90-ii96
    • Liu, Y.1    Wu, Z.2    Mao, Y.3    Rou, K.4    Wang, L.5    Zhang, F.6
  • 3
    • 0036821968 scopus 로고    scopus 로고
    • Illness among schoolchildren during influenza season
    • PMID: 12361443
    • Neuzil KM, Hohlbein C, Zhu Y. Illness among schoolchildren during influenza season. Arch Pediatr Ado-lesc Med. 2002; 156(10): 986. PMID: 12361443
    • (2002) Arch Pediatr Ado-Lesc Med , vol.156 , Issue.10 , pp. 986
    • Neuzil, K.M.1    Hohlbein, C.2    Zhu, Y.3
  • 4
    • 34548486461 scopus 로고    scopus 로고
    • Timeliness of data sources used for influenza surveillance
    • PMID: 17600101
    • Dailey L, Watkins RE, Plant AJ. Timeliness of data sources used for influenza surveillance. J Am Med Inform Assoc: JAMIA. 2007; 14(5): 626–631. https://doi.org/10.1197/jamia.M2328 PMID: 17600101
    • (2007) J Am Med Inform Assoc: JAMIA , vol.14 , Issue.5 , pp. 626-631
    • Dailey, L.1    Watkins, R.E.2    Plant, A.J.3
  • 5
    • 70349083778 scopus 로고    scopus 로고
    • Monitoring the emergence of community transmission of influenza A/H1N1 2009 in England: A cross sectional opportunistic survey of self sampled telephone callers to NHS Direct
    • PMID: 19713236
    • Elliot AJ, Powers C, Thornton A, Obi C, Hill C, Simms I, et al. Monitoring the emergence of community transmission of influenza A/H1N1 2009 in England: a cross sectional opportunistic survey of self sampled telephone callers to NHS Direct. BMJ. 2009; 339: b3403. https://doi.org/10.1136/bmj.b3403 PMID: 19713236
    • (2009) BMJ , vol.339 , pp. b3403
    • Elliot, A.J.1    Powers, C.2    Thornton, A.3    Obi, C.4    Hill, C.5    Simms, I.6
  • 6
    • 39649091877 scopus 로고    scopus 로고
    • HealthMap: Global infectious disease monitoring through automated classification and visualization of Internet media reports
    • PMID: 18096908
    • Freifeld CC, Mandl KD, Reis BY, Brownstein JS. HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. J Am Med Inform Assoc. 2008; 15(2): 150–157. https://doi.org/10.1197/jamia.M2544 PMID: 18096908
    • (2008) J Am Med Inform Assoc , vol.15 , Issue.2 , pp. 150-157
    • Freifeld, C.C.1    Mandl, K.D.2    Reis, B.Y.3    Brownstein, J.S.4
  • 7
    • 84862258546 scopus 로고    scopus 로고
    • Trending now: Using social media to predict and track disease outbreaks
    • Schmidt CW. Trending now: using social media to predict and track disease outbreaks. Environ Health Perspect. 2012; 120: a31–a33.
    • (2012) Environ Health Perspect , vol.120 , pp. a31-a33
    • Schmidt, C.W.1
  • 8
    • 72849140260 scopus 로고    scopus 로고
    • Google Trends: A web-based tool for real-time surveillance of disease outbreaks
    • PMID: 19845471
    • Carneiro HA, Mylonakis E. Google Trends: a web-based tool for real-time surveillance of disease outbreaks. Clin Infect Dis. 2009; 49(10): 1557–1564. https://doi.org/10.1086/630200 PMID: 19845471
    • (2009) Clin Infect Dis , vol.49 , Issue.10 , pp. 1557-1564
    • Carneiro, H.A.1    Mylonakis, E.2
  • 9
    • 85049673569 scopus 로고    scopus 로고
    • WHO case definitions of HIV for surveillance and revised clinical staging and immunological classification of HIV-related disease in adults and children
    • World Health Organization. WHO case definitions of HIV for surveillance and revised clinical staging and immunological classification of HIV-related disease in adults and children. HIV/AIDS. 2007. Available from: http://www.who.int/hiv/pub/guidelines/HIVstaging150307.pdf
    • (2007) HIV/AIDS
  • 10
    • 7044263265 scopus 로고    scopus 로고
    • Patient Internet use for health information at three urban primary care clinics
    • PMID: 15298993
    • Dickerson S, Reinhart AM, Feeley TH, Bidani R, Rich E, Garg VK, et al. Patient Internet use for health information at three urban primary care clinics. J Am Med Inform Assoc. 2004; 11(6): 499–504. https://doi.org/10.1197/jamia.M1460 PMID: 15298993
    • (2004) J Am Med Inform Assoc , vol.11 , Issue.6 , pp. 499-504
    • Dickerson, S.1    Reinhart, A.M.2    Feeley, T.H.3    Bidani, R.4    Rich, E.5    Garg, V.K.6
  • 11
    • 77953036712 scopus 로고    scopus 로고
    • The utility of ‘Google Trends’ for epidemiological research: Lyme disease as an example
    • PMID: 20503183
    • Seifter A, Schwarzwalder A, Geis K, Aucott J. The utility of ‘Google Trends’ for epidemiological research: Lyme disease as an example. Geospat Health. 2010; 4(2): 135–137. https://doi.org/10.4081/gh.2010.195 PMID: 20503183
    • (2010) Geospat Health , vol.4 , Issue.2 , pp. 135-137
    • Seifter, A.1    Schwarzwalder, A.2    Geis, K.3    Aucott, J.4
  • 12
    • 34748880596 scopus 로고    scopus 로고
    • Infodemiology: Tracking flu-related searches on the web for syndromic surveillance
    • PMID: 17238340
    • Eysenbach G. Infodemiology: tracking flu-related searches on the web for syndromic surveillance. AMIA Annu Symp Proc. 2006: 244–248. PMID: 17238340
    • (2006) AMIA Annu Symp Proc , pp. 244-248
    • Eysenbach, G.1
  • 13
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • PMID: 19020500
    • Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009; 457(7232): 1012–1014. https://doi.org/10.1038/ nature07634 PMID: 19020500
    • (2009) Nature , vol.457 , Issue.7232 , pp. 1012-1014
    • Ginsberg, J.1    Mohebbi, M.H.2    Patel, R.S.3    Brammer, L.4    Smolinski, M.S.5    Brilliant, L.6
  • 14
    • 84938150088 scopus 로고    scopus 로고
    • Early detection of an epidemic erythromelalgia outbreak using Baidu search data
    • PMID: 26218589
    • Gu Y, Chen F, Liu T, Lv X, Shao Z, Lin H, et al. Early detection of an epidemic erythromelalgia outbreak using Baidu search data. Sci Rep. 2015; 5: 12649. https://doi.org/10.1038/srep12649 PMID: 26218589
    • (2015) Sci Rep , vol.5 , pp. 12649
    • Gu, Y.1    Chen, F.2    Liu, T.3    Lv, X.4    Shao, Z.5    Lin, H.6
  • 17
    • 84872867329 scopus 로고    scopus 로고
    • Using Google Trends for influenza surveillance in South China
    • PMID: 23372837
    • Kang M, Zhong H, He J, Rutherford S, Yang F. Using Google Trends for influenza surveillance in South China. PLoS ONE. 2013; 8(1): e55205. https://doi.org/10.1371/journal.pone.0055205 PMID: 23372837
    • (2013) PLoS ONE , vol.8 , Issue.1
    • Kang, M.1    Zhong, H.2    He, J.3    Rutherford, S.4    Yang, F.5
  • 18
    • 84878474470 scopus 로고    scopus 로고
    • Monitoring influenza epidemics in China with search query from Baidu
    • PMID: 23750192
    • Yuan Q, Nsoesie EO, Lv B, Peng G, Chunara R, Brownstein JS. Monitoring influenza epidemics in China with search query from Baidu. PLoS ONE. 2013; 8(5): e64323. https://doi.org/10.1371/journal.pone.0064323 PMID: 23750192
    • (2013) PLoS ONE , vol.8 , Issue.5
    • Yuan, Q.1    Nsoesie, E.O.2    Lv, B.3    Peng, G.4    Chunara, R.5    Brownstein, J.S.6
  • 19
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann RP. An introduction to computing with neural nets. IEEE ASSP Mag. 1987; 4(2): 4–22.
    • (1987) IEEE ASSP Mag , vol.4 , Issue.2 , pp. 4-22
    • Lippmann, R.P.1
  • 20
    • 84906900188 scopus 로고
    • Neurocomputer applications
    • Springer, Berlin, Heidelberg
    • Hecht-Nielsen R. Neurocomputer applications. In: Neural computers. Springer, Berlin, Heidelberg. 1989. pp. 445–453.
    • (1989) Neural Computers , pp. 445-453
    • Hecht-Nielsen, R.1
  • 23
    • 84901638068 scopus 로고    scopus 로고
    • Predicting hotel demand using destination marketing organization’s web traffic data
    • Yang Y, Bing P, Song HY. Predicting hotel demand using destination marketing organization’s web traffic data. J Travel Res. 2013; 53(4): 433–447.
    • (2013) J Travel Res , vol.53 , Issue.4 , pp. 433-447
    • Yang, Y.1    Bing, P.2    Song, H.Y.3
  • 25
    • 84869212320 scopus 로고    scopus 로고
    • Forecasting hotel room demand using search engine data
    • Bing P, Chenguang Wu CGDW, Song HY. Forecasting hotel room demand using search engine data. J Hosp Tour Technol. 2012; 3(3): 196–210.
    • (2012) J Hosp Tour Technol , vol.3 , Issue.3 , pp. 196-210
    • Bing, P.1    Chenguang Wu, C.G.D.W.2    Song, H.Y.3
  • 27
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang GP. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing. 2003; 50: 159–175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 28
    • 33745933319 scopus 로고    scopus 로고
    • Designing an artificial neural network for forecasting tourism time series
    • Palmer A, José Montaño J, Sesé A. Designing an artificial neural network for forecasting tourism time series. Tour Manag. 2006; 27(5): 781–790.
    • (2006) Tour Manag , vol.27 , Issue.5 , pp. 781-790
    • Palmer, A.1    José Montaño, J.2    Sesé, A.3
  • 29
    • 0037217838 scopus 로고    scopus 로고
    • Artificial neural network modelling: A summary of successful applications relative to microbial water quality
    • PMID: 12639035
    • Brion GM, Lingireddy S. Artificial neural network modelling: a summary of successful applications relative to microbial water quality. Water science and technology. 2003; 47(3):235–240. PMID: 12639035
    • (2003) Water Science and Technology , vol.47 , Issue.3 , pp. 235-240
    • Brion, G.M.1    Lingireddy, S.2
  • 30
    • 65349193872 scopus 로고    scopus 로고
    • Early detection of disease outbreaks using the Internet
    • Wilson K, Brownstein JS. Early detection of disease outbreaks using the Internet. Can Med Assoc J. 2009; 180(8): 829–831.
    • (2009) Can Med Assoc J , vol.180 , Issue.8 , pp. 829-831
    • Wilson, K.1    Brownstein, J.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.