-
1
-
-
84938150477
-
Dark Matter of the Biosphere: The Amazing World of Bacteriophage Diversity
-
Hatfull, G.F. Dark Matter of the Biosphere: The Amazing World of Bacteriophage Diversity. J. Virol. 2015, 89, 8107–8110. [CrossRef] [PubMed]
-
(2015)
J. Virol.
, vol.89
, pp. 8107-8110
-
-
Hatfull, G.F.1
-
2
-
-
0037059610
-
Phage Genomics: Small Is Beautiful
-
Brüssow, H.; Hendrix, R.W. Phage Genomics: Small Is Beautiful. Cell 2002, 108, 13–16. [CrossRef]
-
(2002)
Cell
, vol.108
, pp. 13-16
-
-
Brüssow, H.1
Hendrix, R.W.2
-
3
-
-
49149117900
-
Exploring the Prokaryotic Virosphere
-
Comeau, M.; Hatfull, G.F.; Krisch, H.M.; Lindell, D.; Mann, N.H.; Prangishvili, D. Exploring the Prokaryotic Virosphere. Res. Microbiol. 2008, 159, 306–313. [CrossRef] [PubMed]
-
(2008)
Res. Microbiol.
, vol.159
, pp. 306-313
-
-
Comeau, M.1
Hatfull, G.F.2
Krisch, H.M.3
Lindell, D.4
Mann, N.H.5
Prangishvili, D.6
-
4
-
-
0024475207
-
High Abundance of Viruses Found in Aquatic Environments
-
Bergh, O.; Børsheim, K.Y.; Bratbak, G.; Heldal, M. High Abundance of Viruses Found in Aquatic Environments. Nature 1989, 340, 467–468. [CrossRef] [PubMed]
-
(1989)
Nature
, vol.340
, pp. 467-468
-
-
Bergh, O.1
Børsheim, K.Y.2
Bratbak, G.3
Heldal, M.4
-
5
-
-
20344382957
-
Here a Virus, There a Virus, Everywhere the Same Virus?
-
Breitbart, M.; Rohwer, F. Here a Virus, There a Virus, Everywhere the Same Virus? Trends Microbiol. 2005, 13, 278–284. [CrossRef] [PubMed]
-
(2005)
Trends Microbiol
, vol.13
, pp. 278-284
-
-
Breitbart, M.1
Rohwer, F.2
-
6
-
-
4544321685
-
Phages and the Evolution of Bacterial Pathogens: From Genomic Rearrangements to Lysogenic Conversion
-
Brüssow, H.; Canchaya, C.; Hardt, W.; Bru, H. Phages and the Evolution of Bacterial Pathogens: From Genomic Rearrangements to Lysogenic Conversion. Microbiol. Mol. Biol. Rev. 2004, 68, 560–602. [CrossRef] [PubMed]
-
(2004)
Microbiol. Mol. Biol. Rev.
, vol.68
, pp. 560-602
-
-
Brüssow, H.1
Canchaya, C.2
Hardt, W.3
Bru, H.4
-
7
-
-
0030057090
-
Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin
-
Waldor, M.K.; Mekalanos, J.J. Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin. Science 1996, 272, 1910–1914. [CrossRef] [PubMed]
-
(1996)
Science
, vol.272
, pp. 1910-1914
-
-
Waldor, M.K.1
Mekalanos, J.J.2
-
8
-
-
0001277536
-
Genetic Exchange in Salmonella
-
Zinder, N.D.; Lederberg, J. Genetic Exchange in Salmonella. J. Bacteriol. 1952, 64, 679–699. [PubMed]
-
(1952)
J. Bacteriol.
, vol.64
, pp. 679-699
-
-
Zinder, N.D.1
Lederberg, J.2
-
9
-
-
34548792911
-
Marine Viruses—Major Players in the Global Ecosystem
-
Suttle, C.A. Marine Viruses—Major Players in the Global Ecosystem. Nat. Rev. Microbiol. 2007, 5, 801–812. [CrossRef] [PubMed]
-
(2007)
Nat. Rev. Microbiol.
, vol.5
, pp. 801-812
-
-
Suttle, C.A.1
-
10
-
-
85041102115
-
Deposition Rates of Viruses and Bacteria above the Atmospheric Boundary Layer
-
Reche, I.; D’Orta, G.; Mladenov, N.; Winget, D.M.; Suttle, C.A. Deposition Rates of Viruses and Bacteria above the Atmospheric Boundary Layer. ISME J. 2018, 12, 1154–1162. [CrossRef] [PubMed]
-
(2018)
ISME J
, vol.12
, pp. 1154-1162
-
-
Reche, I.1
D’Orta, G.2
Mladenov, N.3
Winget, D.M.4
Suttle, C.A.5
-
11
-
-
0019127851
-
Nucleotide Sequence of the Filamentous Bacteriophage M13 DNA Genome: Comparison with Phage Fd
-
Van Wezenbeek, P.M.; Hulsebos, T.J.; Schoenmakers, J.G. Nucleotide Sequence of the Filamentous Bacteriophage M13 DNA Genome: Comparison with Phage Fd. Gene 1980, 11, 129–148. [CrossRef]
-
(1980)
Gene
, vol.11
, pp. 129-148
-
-
van Wezenbeek, P.M.1
Hulsebos, T.J.2
Schoenmakers, J.G.3
-
12
-
-
49149111138
-
The Immense Journey of Bacteriophage T4-From d’Hérelle to Delbrück and Then to Darwin and beyond
-
Krisch, H.M.; Comeau, A.M. The Immense Journey of Bacteriophage T4-From d’Hérelle to Delbrück and Then to Darwin and beyond. Res. Microbiol. 2008, 159, 314–324. [CrossRef] [PubMed]
-
(2008)
Res. Microbiol.
, vol.159
, pp. 314-324
-
-
Krisch, H.M.1
Comeau, A.M.2
-
13
-
-
84939935484
-
Bacteriophage Lambda: Early Pioneer and Still Relevant
-
Casjens, S.R.; Hendrix, R.W. Bacteriophage Lambda: Early Pioneer and Still Relevant. Virology 2015, 479–480, 310–330. [CrossRef] [PubMed]
-
(2015)
Virology
, pp. 310-330
-
-
Casjens, S.R.1
Hendrix, R.W.2
-
14
-
-
84947491821
-
A Century of the Phage: Past, Present and Future
-
Salmond, G.P.C.; Fineran, P.C. A Century of the Phage: Past, Present and Future. Nat. Rev. Microbiol. 2015, 13, 777–786. [CrossRef] [PubMed]
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 777-786
-
-
Salmond, G.P.C.1
Fineran, P.C.2
-
15
-
-
0002610948
-
Independent Functions of Viral Protein and Nucleic Acid in Growth of Bacteriophage
-
Hershey, A.D.; Chase, M. Independent Functions of Viral Protein and Nucleic Acid in Growth of Bacteriophage. J. Gen. Physiol. 1952, 36, 39–56. [CrossRef] [PubMed]
-
(1952)
J. Gen. Physiol.
, vol.36
, pp. 39-56
-
-
Hershey, A.D.1
Chase, M.2
-
16
-
-
36949088975
-
An Unstable Intermediate Carrying Information from Genes to Ribosomes for Protein Synthesis
-
Brenner, S.; Jacob, F.; Meselson, M. An Unstable Intermediate Carrying Information from Genes to Ribosomes for Protein Synthesis. Nature 1961, 190, 576–581. [CrossRef] [PubMed]
-
(1961)
Nature
, vol.190
, pp. 576-581
-
-
Brenner, S.1
Jacob, F.2
Meselson, M.3
-
17
-
-
0000818999
-
General Nature of the Genetic Code for Proteins
-
Crick, F.H.C.; Barnett, L.; Brenner, S.; Watts-Tobin, R.J. General Nature of the Genetic Code for Proteins. Nature 1961, 192, 1227–1232. [CrossRef] [PubMed]
-
(1961)
Nature
, vol.192
, pp. 1227-1232
-
-
Crick, F.H.C.1
Barnett, L.2
Brenner, S.3
Watts-Tobin, R.J.4
-
18
-
-
34047118522
-
CRISPR Provides Acquired Resistance against Viruses in Prokaryotes
-
Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR Provides Acquired Resistance against Viruses in Prokaryotes. Science 2007, 315, 1709–1712. [CrossRef] [PubMed]
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
Moineau, S.6
Romero, D.A.7
Horvath, P.8
-
19
-
-
84913594397
-
The New Frontier of Genome Engineering with CRISPR-Cas9
-
Doudna, J.A.; Charpentier, E. The New Frontier of Genome Engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [CrossRef] [PubMed]
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
20
-
-
50749121524
-
An Investigation on the Nature of Ultra-Microscopic Viruses
-
Twort, F.W. An Investigation on the Nature of Ultra-Microscopic Viruses. Lancet 1915, 186, 1241–1243. [CrossRef]
-
(1915)
Lancet
, vol.186
, pp. 1241-1243
-
-
Twort, F.W.1
-
21
-
-
0000077049
-
Sur Un Microbe Invisible Antagoniste Des Bacilles Dysentériques
-
D’Herelle, F. Sur Un Microbe Invisible Antagoniste Des Bacilles Dysentériques. CR Acad. Sci. Paris 1917, 165, 373–375.
-
(1917)
CR Acad. Sci. Paris
, vol.165
, pp. 373-375
-
-
D’Herelle, F.1
-
22
-
-
0037335488
-
Bacteriophage T4 Genome
-
Miller, E.S.; Kutter, E.; Mosig, G.; Arisaka, F.; Kunisawa, T.; Rüger, W. Bacteriophage T4 Genome. Microbiol. Mol. Biol. Rev. 2003, 67, 86–156. [CrossRef] [PubMed]
-
(2003)
Microbiol. Mol. Biol. Rev.
, vol.67
, pp. 86-156
-
-
Miller, E.S.1
Kutter, E.2
Mosig, G.3
Arisaka, F.4
Kunisawa, T.5
Rüger, W.6
-
23
-
-
85018215086
-
Whole Genome Comparison of a Large Collection of Mycobacteriophages Reveals a Continuum of Phage Genetic Diversity
-
Pope, W.H.; Bowman, C.A.; Russell, D.A.; Jacobs-Sera, D.; Asai, D.J.; Cresawn, S.G.; Jacobs, W.R.; Hendrix, R.W.; Lawrence, J.G.; Hatfull, G.F. Whole Genome Comparison of a Large Collection of Mycobacteriophages Reveals a Continuum of Phage Genetic Diversity. eLife 2015, 4, e06416. [CrossRef] [PubMed]
-
(2015)
Elife
, vol.4
-
-
Pope, W.H.1
Bowman, C.A.2
Russell, D.A.3
Jacobs-Sera, D.4
Asai, D.J.5
Cresawn, S.G.6
Jacobs, W.R.7
Hendrix, R.W.8
Lawrence, J.G.9
Hatfull, G.F.10
-
24
-
-
77949347671
-
Analysis of High-Throughput Sequencing and Annotation Strategies for Phage Genomes
-
Henn, M.R.; Sullivan, M.B.; Stange-Thomann, N.; Osburne, M.S.; Berlin, A.M.; Kelly, L.; Yandava, C.; Kodira, C.; Zeng, Q.; Weiand, M.; et al. Analysis of High-Throughput Sequencing and Annotation Strategies for Phage Genomes. PLoS ONE 2010, 5, e9083. [CrossRef] [PubMed]
-
(2010)
Plos ONE
, vol.5
-
-
Henn, M.R.1
Sullivan, M.B.2
Stange-Thomann, N.3
Osburne, M.S.4
Berlin, A.M.5
Kelly, L.6
Yandava, C.7
Kodira, C.8
Zeng, Q.9
Weiand, M.10
-
25
-
-
84977091162
-
Assessing Illumina Technology for the High-Throughput Sequencing of Bacteriophage Genomes
-
Rihtman, B.; Meaden, S.; Clokie, M.R.J.; Koskella, B.; Millard, A.D. Assessing Illumina Technology for the High-Throughput Sequencing of Bacteriophage Genomes. PeerJ 2016, 4, e2055. [CrossRef] [PubMed]
-
(2016)
Peerj
, vol.4
-
-
Rihtman, B.1
Meaden, S.2
Clokie, M.R.J.3
Koskella, B.4
Millard, A.D.5
-
26
-
-
84991105090
-
Genetically Engineered Phages: A Review of Advances over the Last Decade
-
Pires, D.P.; Cleto, S.; Sillankorva, S.; Azeredo, J.; Lu, T.K. Genetically Engineered Phages: A Review of Advances over the Last Decade. Microbiol. Mol. Biol. Rev. 2016, 80, 523–543. [CrossRef] [PubMed]
-
(2016)
Microbiol. Mol. Biol. Rev.
, vol.80
, pp. 523-543
-
-
Pires, D.P.1
Cleto, S.2
Sillankorva, S.3
Azeredo, J.4
Lu, T.K.5
-
27
-
-
0029930408
-
Construction of Luciferase Reporter Bacteriophage A511::luxAB for Rapid and Sensitive Detection of Viable Listeria Cells
-
Loessner, M.J.; Rees, C.E.; Stewart, G.S.; Scherer, S. Construction of Luciferase Reporter Bacteriophage A511::luxAB for Rapid and Sensitive Detection of Viable Listeria Cells. Appl. Environ. Microbiol. 1996, 62, 1133–1140. [PubMed]
-
(1996)
Appl. Environ. Microbiol.
, vol.62
, pp. 1133-1140
-
-
Loessner, M.J.1
Rees, C.E.2
Stewart, G.S.3
Scherer, S.4
-
28
-
-
84906216646
-
CRISPR-Cas: An Efficient Tool for Genome Engineering of Virulent Bacteriophages
-
Martel, B.; Moineau, S. CRISPR-Cas: An Efficient Tool for Genome Engineering of Virulent Bacteriophages. Nucleic Acids Res. 2014, 42, 9504–9513. [CrossRef] [PubMed]
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 9504-9513
-
-
Martel, B.1
Moineau, S.2
-
30
-
-
58149105452
-
BRED: A Simple and Powerful Tool for Constructing Mutant and Recombinant Bacteriophage Genomes
-
Marinelli, L.J.; Piuri, M.; Swigoňová, Z.; Balachandran, A.; Oldfield, L.M.; van Kessel, J.C.; Hatfull, G.F. BRED: A Simple and Powerful Tool for Constructing Mutant and Recombinant Bacteriophage Genomes. PLoS ONE 2008, 3, e3957. [CrossRef] [PubMed]
-
(2008)
Plos ONE
, vol.3
-
-
Marinelli, L.J.1
Piuri, M.2
Swigoňová, Z.3
Balachandran, A.4
Oldfield, L.M.5
van Kessel, J.C.6
Hatfull, G.F.7
-
31
-
-
84942256417
-
Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing
-
Ando, H.; Lemire, S.; Pires, D.P.; Lu, T.K. Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Syst. 2015, 1, 187–196. [CrossRef] [PubMed]
-
(2015)
Cell Syst
, vol.1
, pp. 187-196
-
-
Ando, H.1
Lemire, S.2
Pires, D.P.3
Lu, T.K.4
-
32
-
-
85042004438
-
Cross-Genus Rebooting of Custom-Made, Synthetic Bacteriophage Genomes in L-Form Bacteria
-
Kilcher, S.; Studer, P.; Muessner, C.; Klumpp, J.; Loessner, M.J. Cross-Genus Rebooting of Custom-Made, Synthetic Bacteriophage Genomes in L-Form Bacteria. Proc. Natl. Acad. Sci. USA 2018, 115, 567–572. [CrossRef] [PubMed]
-
(2018)
Proc. Natl. Acad. Sci. USA
, vol.115
, pp. 567-572
-
-
Kilcher, S.1
Studer, P.2
Muessner, C.3
Klumpp, J.4
Loessner, M.J.5
-
33
-
-
84894476108
-
Efficient Engineering of a Bacteriophage Genome Using the Type I-E CRISPR-Cas System
-
Kiro, R.; Shitrit, D.; Qimron, U. Efficient Engineering of a Bacteriophage Genome Using the Type I-E CRISPR-Cas System. RNA Biol. 2014, 11, 42–44. [CrossRef] [PubMed]
-
(2014)
RNA Biol
, vol.11
, pp. 42-44
-
-
Kiro, R.1
Shitrit, D.2
Qimron, U.3
-
34
-
-
84957706239
-
Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering
-
Box, A.M.; McGuffie, M.J.; O’Hara, B.J.; Seed, K.D. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering. J. Bacteriol. 2016, 198, 578–590. [CrossRef] [PubMed]
-
(2016)
J. Bacteriol.
, vol.198
, pp. 578-590
-
-
Box, A.M.1
McGuffie, M.J.2
O’Hara, B.J.3
Seed, K.D.4
-
35
-
-
85020703557
-
Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9
-
Lemay, M.-L.; Tremblay, D.M.; Moineau, S. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9. ACS Synth. Biol. 2017, 6, 1351–1358. [CrossRef] [PubMed]
-
(2017)
ACS Synth. Biol.
, vol.6
, pp. 1351-1358
-
-
Lemay, M.-L.1
Tremblay, D.M.2
Moineau, S.3
-
36
-
-
85038629995
-
Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10
-
Bari, S.M.N.; Walker, F.C.; Cater, K.; Aslan, B.; Hatoum-Aslan, A. Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10. ACS Synth. Biol. 2017, 6, 2316–2325. [CrossRef] [PubMed]
-
(2017)
ACS Synth. Biol.
, vol.6
, pp. 2316-2325
-
-
Bari, S.M.N.1
Walker, F.C.2
Cater, K.3
Aslan, B.4
Hatoum-Aslan, A.5
-
37
-
-
85031892641
-
Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9
-
Tao, P.; Wu, X.; Tang, W.-C.; Zhu, J.; Rao, V. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9. ACS Synth. Biol. 2017, 6, 1952–1961. [CrossRef] [PubMed]
-
(2017)
ACS Synth. Biol.
, vol.6
, pp. 1952-1961
-
-
Tao, P.1
Wu, X.2
Tang, W.-C.3
Zhu, J.4
Rao, V.5
-
38
-
-
34250662138
-
The CRISPRdb Database and Tools to Display CRISPRs and to Generate Dictionaries of Spacers and Repeats
-
Grissa, I.; Vergnaud, G.; Pourcel, C. The CRISPRdb Database and Tools to Display CRISPRs and to Generate Dictionaries of Spacers and Repeats. BMC Bioinform. 2007, 8, 172. [CrossRef] [PubMed]
-
(2007)
BMC Bioinform
, vol.8
, pp. 172
-
-
Grissa, I.1
Vergnaud, G.2
Pourcel, C.3
-
39
-
-
33744941078
-
The Repetitive DNA Elements Called CRISPRs and Their Associated Genes: Evidence of Horizontal Transfer among Prokaryotes
-
Godde, J.S.; Bickerton, A. The Repetitive DNA Elements Called CRISPRs and Their Associated Genes: Evidence of Horizontal Transfer among Prokaryotes. J. Mol. Evol. 2006, 62, 718–729. [CrossRef] [PubMed]
-
(2006)
J. Mol. Evol.
, vol.62
, pp. 718-729
-
-
Godde, J.S.1
Bickerton, A.2
-
40
-
-
34248400310
-
A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes
-
Haft, D.H.; Selengut, J.; Mongodin, E.F.; Nelson, K.E. A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes. PLoS Comput. Biol. 2005, 1, e60. [CrossRef] [PubMed]
-
(2005)
Plos Comput. Biol.
, vol.1
-
-
Haft, D.H.1
Selengut, J.2
Mongodin, E.F.3
Nelson, K.E.4
-
41
-
-
49649114086
-
Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes
-
Brouns, S.J.J.; Jore, M.M.; Lundgren, M.; Westra, E.R.; Slijkhuis, R.J.H.; Snijders, A.P.L.; Dickman, M.J.; Makarova, K.S.; Koonin, E.V.; van der Oost, J. Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science 2008, 321, 960–964. [CrossRef] [PubMed]
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.H.5
Snijders, A.P.L.6
Dickman, M.J.7
Makarova, K.S.8
Koonin, E.V.9
van der Oost, J.10
-
42
-
-
84944449180
-
An Updated Evolutionary Classification of CRISPR-Cas Systems
-
Makarova, K.S.; Wolf, Y.I.; Alkhnbashi, O.S.; Costa, F.; Shah, S.A.; Saunders, S.J.; Barrangou, R.; Brouns, S.J.J.; Charpentier, E.; Haft, D.H.; et al. An Updated Evolutionary Classification of CRISPR-Cas Systems. Nat. Rev. Microbiol. 2015, 13, 722–736. [CrossRef] [PubMed]
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
Wolf, Y.I.2
Alkhnbashi, O.S.3
Costa, F.4
Shah, S.A.5
Saunders, S.J.6
Barrangou, R.7
Brouns, S.J.J.8
Charpentier, E.9
Haft, D.H.10
-
43
-
-
85020445396
-
Diversity, Classification and Evolution of CRISPR-Cas Systems
-
Koonin, E.V.; Makarova, K.S.; Zhang, F. Diversity, Classification and Evolution of CRISPR-Cas Systems. Curr. Opin. Microbiol. 2017, 37, 67–78. [CrossRef] [PubMed]
-
(2017)
Curr. Opin. Microbiol.
, vol.37
, pp. 67-78
-
-
Koonin, E.V.1
Makarova, K.S.2
Zhang, F.3
-
44
-
-
79953779608
-
Cas3 Is a Single-Stranded DNA Nuclease and ATP-Dependent Helicase in the CRISPR/Cas Immune System
-
Sinkunas, T.; Gasiunas, G.; Fremaux, C.; Barrangou, R.; Horvath, P.; Siksnys, V. Cas3 Is a Single-Stranded DNA Nuclease and ATP-Dependent Helicase in the CRISPR/Cas Immune System. EMBO J. 2011, 30, 1335–1342. [CrossRef] [PubMed]
-
(2011)
EMBO J
, vol.30
, pp. 1335-1342
-
-
Sinkunas, T.1
Gasiunas, G.2
Fremaux, C.3
Barrangou, R.4
Horvath, P.5
Siksnys, V.6
-
45
-
-
81255160844
-
Structure and Activity of the Cas3 HD Nuclease MJ0384, an Effector Enzyme of the CRISPR Interference
-
Beloglazova, N.; Petit, P.; Flick, R.; Brown, G.; Savchenko, A.; Yakunin, A.F. Structure and Activity of the Cas3 HD Nuclease MJ0384, an Effector Enzyme of the CRISPR Interference. EMBO J. 2011, 30, 4616–4627. [CrossRef] [PubMed]
-
(2011)
EMBO J
, vol.30
, pp. 4616-4627
-
-
Beloglazova, N.1
Petit, P.2
Flick, R.3
Brown, G.4
Savchenko, A.5
Yakunin, A.F.6
-
46
-
-
84861996069
-
CRISPR Immunity Relies on the Consecutive Binding and Degradation of Negatively Supercoiled Invader DNA by Cascade and Cas3
-
Westra, E.R.; van Erp, P.B.G.; Künne, T.; Wong, S.P.; Staals, R.H.J.; Seegers, C.L.C.; Bollen, S.; Jore, M.M.; Semenova, E.; Severinov, K.; et al. CRISPR Immunity Relies on the Consecutive Binding and Degradation of Negatively Supercoiled Invader DNA by Cascade and Cas3. Mol. Cell 2012, 46, 595–605. [CrossRef] [PubMed]
-
(2012)
Mol. Cell
, vol.46
, pp. 595-605
-
-
Westra, E.R.1
van Erp, P.B.G.2
Künne, T.3
Wong, S.P.4
Staals, R.H.J.5
Seegers, C.L.C.6
Bollen, S.7
Jore, M.M.8
Semenova, E.9
Severinov, K.10
-
47
-
-
84907208955
-
Crystal Structure of the CRISPR RNA–Guided Surveillance Complex from Escherichia coli
-
Jackson, R.N.; Golden, S.M.; van Erp, P.B.G.; Carter, J.; Westra, E.R.; Brouns, S.J.J.; van der Oost, J.; Terwilliger, T.C.; Read, R.J.; Wiedenheft, B. Crystal Structure of the CRISPR RNA–Guided Surveillance Complex from Escherichia coli. Science 2014, 345, 1473–1479. [CrossRef] [PubMed]
-
(2014)
Science
, vol.345
, pp. 1473-1479
-
-
Jackson, R.N.1
Golden, S.M.2
van Erp, P.B.G.3
Carter, J.4
Westra, E.R.5
Brouns, S.J.J.6
van der Oost, J.7
Terwilliger, T.C.8
Read, R.J.9
Wiedenheft, B.10
-
48
-
-
84907204893
-
Crystal Structure of a CRISPR RNA–Guided Surveillance Complex Bound to a ssDNA Target
-
Mulepati, S.; Héroux, A.; Bailey, S. Crystal Structure of a CRISPR RNA–Guided Surveillance Complex Bound to a ssDNA Target. Science 2014, 345, 1479–1484. [CrossRef] [PubMed]
-
(2014)
Science
, vol.345
, pp. 1479-1484
-
-
Mulepati, S.1
Héroux, A.2
Bailey, S.3
-
49
-
-
38949123143
-
Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus
-
Deveau, H.; Barrangou, R.; Garneau, J.E.; Labonté, J.; Fremaux, C.; Boyaval, P.; Romero, D.A.; Horvath, P.; Moineau, S. Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus. J. Bacteriol. 2008, 190, 1390–1400. [CrossRef] [PubMed]
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
Barrangou, R.2
Garneau, J.E.3
Labonté, J.4
Fremaux, C.5
Boyaval, P.6
Romero, D.A.7
Horvath, P.8
Moineau, S.9
-
50
-
-
64049118040
-
Short Motif Sequences Determine the Targets of the Prokaryotic CRISPR Defence System
-
Mojica, F.J.M.; Díez-Villaseñor, C.; García-Martínez, J.; Almendros, C. Short Motif Sequences Determine the Targets of the Prokaryotic CRISPR Defence System. Microbiology 2009, 155, 733–740. [PubMed]
-
(2009)
Microbiology
, vol.155
, pp. 733-740
-
-
Mojica, F.J.M.1
Díez-Villaseñor, C.2
García-Martínez, J.3
Almendros, C.4
-
51
-
-
79959963663
-
Interference by Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNA Is Governed by a Seed Sequence
-
Semenova, E.; Jore, M.M.; Datsenko, K.A.; Semenova, A.; Westra, E.R.; Wanner, B.; van der Oost, J.; Brouns, S.J.J.; Severinov, K. Interference by Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNA Is Governed by a Seed Sequence. Proc. Natl. Acad. Sci. USA 2011, 108, 10098–10103. [CrossRef] [PubMed]
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 10098-10103
-
-
Semenova, E.1
Jore, M.M.2
Datsenko, K.A.3
Semenova, A.4
Westra, E.R.5
Wanner, B.6
van der Oost, J.7
Brouns, S.J.J.8
Severinov, K.9
-
52
-
-
79960029056
-
RNA-Guided Complex from a Bacterial Immune System Enhances Target Recognition through Seed Sequence Interactions
-
Wiedenheft, B.; van Duijn, E.; Bultema, J.B.; Waghmare, S.; Zhou, K.; Barendregt, A.; Westphal, W.; Heck, A.J.R.; Boekema, E.J.; Dickman, M.J.; et al. RNA-Guided Complex from a Bacterial Immune System Enhances Target Recognition through Seed Sequence Interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 10092–10097. [CrossRef] [PubMed]
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 10092-10097
-
-
Wiedenheft, B.1
van Duijn, E.2
Bultema, J.B.3
Waghmare, S.4
Zhou, K.5
Barendregt, A.6
Westphal, W.7
Heck, A.J.R.8
Boekema, E.J.9
Dickman, M.J.10
-
53
-
-
85049191572
-
Selection of Genetically Modified Bacteriophages Using the CRISPR-Cas System
-
Manor, M.; Qimron, U. Selection of Genetically Modified Bacteriophages Using the CRISPR-Cas System. Bio-Protocol 2017, 7. [CrossRef] [PubMed]
-
(2017)
Bio-Protocol
, vol.7
-
-
Manor, M.1
Qimron, U.2
-
54
-
-
84902095351
-
Classification and Evolution of Type II CRISPR-Cas Systems
-
Chylinski, K.; Makarova, K.S.; Charpentier, E.; Koonin, E.V. Classification and Evolution of Type II CRISPR-Cas Systems. Nucleic Acids Res. 2014, 42, 6091–6105. [CrossRef] [PubMed]
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 6091-6105
-
-
Chylinski, K.1
Makarova, K.S.2
Charpentier, E.3
Koonin, E.V.4
-
55
-
-
79953250082
-
CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III
-
Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III. Nature 2011, 471, 602–607. [CrossRef] [PubMed]
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
Eckert, M.R.7
Vogel, J.8
Charpentier, E.9
-
56
-
-
78149261827
-
The CRISPR/cas Bacterial Immune System Cleaves Bacteriophage and Plasmid DNA
-
Garneau, J.E.; Dupuis, M.È.; Villion, M.; Romero, D.A.; Barrangou, R.; Boyaval, P.; Fremaux, C.; Horvath, P.; Magadán, A.H.; Moineau, S. The CRISPR/cas Bacterial Immune System Cleaves Bacteriophage and Plasmid DNA. Nature 2010, 468, 67–71. [CrossRef] [PubMed]
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.È.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
Boyaval, P.6
Fremaux, C.7
Horvath, P.8
Magadán, A.H.9
Moineau, S.10
-
57
-
-
80755145195
-
The Streptococcus thermophilus CRISPR/Cas System Provides Immunity in Escherichia Coli
-
Sapranauskas, R.; Gasiunas, G.; Fremaux, C.; Barrangou, R.; Horvath, P.; Siksnys, V. The Streptococcus thermophilus CRISPR/Cas System Provides Immunity in Escherichia Coli. Nucleic Acids Res. 2011, 39, 9275–9282. [CrossRef] [PubMed]
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 9275-9282
-
-
Sapranauskas, R.1
Gasiunas, G.2
Fremaux, C.3
Barrangou, R.4
Horvath, P.5
Siksnys, V.6
-
58
-
-
84874608929
-
CRISPR-Assisted Editing of Bacterial Genomes
-
Jiang, W.; Bikard, D.; Cox, D.; Zhang, F.; Marraffini, L.A. CRISPR-Assisted Editing of Bacterial Genomes. Nat. Biotechnol. 2013, 31, 233–239. [CrossRef] [PubMed]
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
59
-
-
57849137502
-
CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA
-
Marraffini, L.A.; Sontheimer, E.J. CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA. Science 2008, 322, 1843–1845. [CrossRef] [PubMed]
-
(2008)
Science
, vol.322
, pp. 1843-1845
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
60
-
-
75749118174
-
Self vs. Non-Self Discrimination during CRISPR RNA-Directed Immunity
-
Marraffini, L.A.; Sontheimer, E.J. Self vs. Non-Self Discrimination during CRISPR RNA-Directed Immunity. Nature 2010, 463, 568–571. [CrossRef] [PubMed]
-
(2010)
Nature
, vol.463
, pp. 568-571
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
61
-
-
84855475577
-
Mature Clustered, Regularly Interspaced, Short Palindromic Repeats RNA (CrRNA) Length Is Measured by a Ruler Mechanism Anchored at the Precursor Processing Site
-
Hatoum-Aslan, A.; Maniv, I.; Marraffini, L.A. Mature Clustered, Regularly Interspaced, Short Palindromic Repeats RNA (crRNA) Length Is Measured by a Ruler Mechanism Anchored at the Precursor Processing Site. Proc. Natl. Acad. Sci. USA 2011, 108, 21218–21222. [CrossRef] [PubMed]
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 21218-21222
-
-
Hatoum-Aslan, A.1
Maniv, I.2
Marraffini, L.A.3
-
62
-
-
84890935599
-
Genetic Characterization of Antiplasmid Immunity through a Type III-A CRISPR-Cas System
-
Hatoum-Aslan, A.; Maniv, I.; Samai, P.; Marraffini, L.A. Genetic Characterization of Antiplasmid Immunity through a Type III-A CRISPR-Cas System. J. Bacteriol. 2014, 196, 310–317. [CrossRef] [PubMed]
-
(2014)
J. Bacteriol.
, vol.196
, pp. 310-317
-
-
Hatoum-Aslan, A.1
Maniv, I.2
Samai, P.3
Marraffini, L.A.4
-
63
-
-
85041698284
-
Molecular Determinants for CRISPR RNA Maturation in the Cas10—Csm Complex and Roles for Non-Cas Nucleases
-
Walker, F.C.; Chou-Zheng, L.; Dunkle, J.A.; Hatoum-Aslan, A. Molecular Determinants for CRISPR RNA Maturation in the Cas10—Csm Complex and Roles for Non-Cas Nucleases. Nucleic Acids Res. 2017, 45, 2112–2123. [CrossRef] [PubMed]
-
(2017)
Nucleic Acids Res
, vol.45
, pp. 2112-2123
-
-
Walker, F.C.1
Chou-Zheng, L.2
Dunkle, J.A.3
Hatoum-Aslan, A.4
-
64
-
-
84884765703
-
A Ruler Protein in a Complex for Antiviral Defense Determines the Length of Small Interfering CRISPR RNAs
-
Hatoum-Aslan, A.; Samai, P.; Maniv, I.; Jiang, W.; Marraffini, L.A. A Ruler Protein in a Complex for Antiviral Defense Determines the Length of Small Interfering CRISPR RNAs. J. Biol. Chem. 2013, 288, 27888–27897. [CrossRef] [PubMed]
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 27888-27897
-
-
Hatoum-Aslan, A.1
Samai, P.2
Maniv, I.3
Jiang, W.4
Marraffini, L.A.5
-
65
-
-
84908456823
-
Conditional Tolerance of Temperate Phages via Transcription-Dependent CRISPR-Cas Targeting
-
Goldberg, G.W.; Jiang, W.; Bikard, D.; Marraffini, L.A. Conditional Tolerance of Temperate Phages via Transcription-Dependent CRISPR-Cas Targeting. Nature 2014, 514, 633–637. [CrossRef] [PubMed]
-
(2014)
Nature
, vol.514
, pp. 633-637
-
-
Goldberg, G.W.1
Jiang, W.2
Bikard, D.3
Marraffini, L.A.4
-
66
-
-
84930085853
-
Co-Transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity
-
Samai, P.; Pyenson, N.; Jiang, W.; Goldberg, G.W.; Hatoum-Aslan, A.; Marraffini, L.A. Co-Transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity. Cell 2015, 161, 1164–1174. [CrossRef] [PubMed]
-
(2015)
Cell
, vol.161
, pp. 1164-1174
-
-
Samai, P.1
Pyenson, N.2
Jiang, W.3
Goldberg, G.W.4
Hatoum-Aslan, A.5
Marraffini, L.A.6
-
67
-
-
84958125062
-
Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity
-
Jiang, W.; Samai, P.; Marraffini, L.A. Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity. Cell 2016, 164, 710–721. [CrossRef] [PubMed]
-
(2016)
Cell
, vol.164
, pp. 710-721
-
-
Jiang, W.1
Samai, P.2
Marraffini, L.A.3
-
68
-
-
85021810724
-
A Cyclic Oligonucleotide Signaling Pathway in Type III CRISPR-Cas Systems
-
Kazlauskiene, M.; Kostiuk, G.; Venclovas, Č.; Tamulaitis, G.; Siksnys, V. A Cyclic Oligonucleotide Signaling Pathway in Type III CRISPR-Cas Systems. Science 2017, 357, 605–609. [CrossRef] [PubMed]
-
(2017)
Science
, vol.357
, pp. 605-609
-
-
Kazlauskiene, M.1
Kostiuk, G.2
Venclovas, Č.3
Tamulaitis, G.4
Siksnys, V.5
-
69
-
-
85028735202
-
CRISPR–Cas Systems Produce Cyclic Oligoadenylate Second Messengers
-
Niewoehner, O.; Garcia-Doval, C.; Rostøl, J.T.; Berk, C.; Schwede, F.; Bigler, L.; Hall, J.; Marraffini, L.A.; Jinek, M. Type III CRISPR–Cas Systems Produce Cyclic Oligoadenylate Second Messengers. Nature 2017, 548, 543–548. [CrossRef] [PubMed]
-
(2017)
Nature
, vol.548
, pp. 543-548
-
-
Niewoehner, O.1
Garcia-Doval, C.2
Rostøl, J.T.3
Berk, C.4
Schwede, F.5
Bigler, L.6
Hall, J.7
Marraffini, L.A.8
Jinek, M.9
Type, I.I.I.10
-
70
-
-
84960340479
-
Impact of Different Target Sequences on Type III CRISPR-Cas Immunity
-
Maniv, I.; Jiang, W.; Bikard, D.; Marraffini, L.A. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity. J. Bacteriol. 2016, 198, 941–950. [CrossRef] [PubMed]
-
(2016)
J. Bacteriol.
, vol.198
, pp. 941-950
-
-
Maniv, I.1
Jiang, W.2
Bikard, D.3
Marraffini, L.A.4
-
71
-
-
85027535502
-
Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape
-
Pyenson, N.C.; Gayvert, K.; Varble, A.; Elemento, O.; Marraffini, L.A. Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape. Cell Host Microbe 2017, 22, 343–353. [CrossRef] [PubMed]
-
(2017)
Cell Host Microbe
, vol.22
, pp. 343-353
-
-
Pyenson, N.C.1
Gayvert, K.2
Varble, A.3
Elemento, O.4
Marraffini, L.A.5
-
72
-
-
85038633218
-
A Novel Staphylococcus Podophage Encodes a Unique Lysin with Unusual Modular Design
-
Cater, K.; Dandu, V.S.; Bari, S.M.N.; Lackey, K.; Everett, G.F.K.; Hatoum-Aslan, A. A Novel Staphylococcus Podophage Encodes a Unique Lysin with Unusual Modular Design. mSphere 2017, 2. [CrossRef] [PubMed]
-
(2017)
Msphere
, vol.2
-
-
Cater, K.1
Dandu, V.S.2
Bari, S.M.N.3
Lackey, K.4
Everett, G.F.K.5
Hatoum-Aslan, A.6
-
73
-
-
80052555956
-
Microbiological and Molecular Assessment of Bacteriophage ISP for the Control of Staphylococcus aureus
-
Vandersteegen, K.; Mattheus, W.; Ceyssens, P.J.; Bilocq, F.; de Vos, D.; Pirnay, J.P.; Noben, J.P.; Merabishvili, M.; Lipinska, U.; Hermans, K.; et al. Microbiological and Molecular Assessment of Bacteriophage ISP for the Control of Staphylococcus aureus. PLoS ONE 2011, 6, e24418. [CrossRef] [PubMed]
-
(2011)
Plos ONE
, vol.6
-
-
Vandersteegen, K.1
Mattheus, W.2
Ceyssens, P.J.3
Bilocq, F.4
de Vos, D.5
Pirnay, J.P.6
Noben, J.P.7
Merabishvili, M.8
Lipinska, U.9
Hermans, K.10
-
74
-
-
84872607723
-
Bacteriophage Genes that Inactivate the CRISPR/Cas Bacterial Immune System
-
Bondy-Denomy, J.; Pawluk, A.; Maxwell, K.L.; Davidson, A.R. Bacteriophage Genes that Inactivate the CRISPR/Cas Bacterial Immune System. Nature 2013, 493, 429–432. [CrossRef] [PubMed]
-
(2013)
Nature
, vol.493
, pp. 429-432
-
-
Bondy-Denomy, J.1
Pawluk, A.2
Maxwell, K.L.3
Davidson, A.R.4
-
75
-
-
84899866053
-
A New Group of Phage Anti-CRISPR Genes Inhibits the Type I-E CRISPR-Cas System of Pseudomonas aeruginosa
-
Pawluk, A.; Bondy-Denomy, J.; Cheung, V.H.W.; Maxwell, K.L.; Davidson, R. A New Group of Phage Anti-CRISPR Genes Inhibits the Type I-E CRISPR-Cas System of Pseudomonas aeruginosa. mBio 2014, 5. [CrossRef] [PubMed]
-
(2014)
Mbio
, vol.5
-
-
Pawluk, A.1
Bondy-Denomy, J.2
Cheung, V.H.W.3
Maxwell, K.L.4
Davidson, R.5
-
76
-
-
85006307718
-
Naturally Occurring Off-Switches for CRISPR-Cas9
-
Pawluk, A.; Amrani, N.; Zhang, Y.; Garcia, B.; Hidalgo-Reyes, Y.; Lee, J.; Edraki, A.; Shah, M.; Sontheimer, E.J.; Maxwell, K.L.; et al. Naturally Occurring Off-Switches for CRISPR-Cas9. Cell 2016, 167, 1829–1838. [CrossRef] [PubMed]
-
(2016)
Cell
, vol.167
, pp. 1829-1838
-
-
Pawluk, A.1
Amrani, N.2
Zhang, Y.3
Garcia, B.4
Hidalgo-Reyes, Y.5
Lee, J.6
Edraki, A.7
Shah, M.8
Sontheimer, E.J.9
Maxwell, K.L.10
|