메뉴 건너뛰기




Volumn , Issue , 2009, Pages 126-136

Regularity, boosting, and efficiently simulating every high-entropy distribution

Author keywords

[No Author keywords available]

Indexed keywords

BOUNDED FUNCTION; COMBINATORICS; COMPLEXITY THEORY; DISTINGUISHERS; ENTROPY DISTRIBUTION; FINITE DOMAINS; MIN-ENTROPY; POLYNOMIAL SIZE; QUANTITATIVE PARAMETERS; REGULARITY LEMMA;

EID: 70350646988     PISSN: 10930159     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CCC.2009.41     Document Type: Conference Paper
Times cited : (78)

References (15)
  • 1
    • 0040942625 scopus 로고    scopus 로고
    • Quick approximation to matrices and applications
    • A. M. Frieze and R. Kannan. Quick Approximation to Matrices and Applications. Combinatorica, 19(2): 175-220, 1999.
    • (1999) Combinatorica , vol.19 , Issue.2 , pp. 175-220
    • Frieze, A.M.1    Kannan., R.2
  • 3
    • 0024611659 scopus 로고
    • The knowledge complexity of interactive proof systems
    • Preliminary version in Proc of STOC'85
    • S. Goldwasser, S. Micali, and C. Rackof. The Knowledge Complexity of Interactive Proof Systems. SIAM Journal on Computing, 18(1): 186-208, 1989. Preliminary version in Proc of STOC'85.
    • (1989) SIAM Journal on Computing , vol.18 , Issue.1 , pp. 186-208
    • Goldwasser, S.1    Micali, S.2    Rackof., C.3
  • 5
    • 43449086031 scopus 로고    scopus 로고
    • The primes contain arbitrarily long arithmetic progressions
    • B. Green and T. Tao. The primes contain arbitrarily long arithmetic progressions. Annals of Mathematics, 167: 481-547, 2008.
    • (2008) Annals of Mathematics , vol.167 , pp. 481-547
    • Green, B.1    Tao., T.2
  • 9
    • 0038290332 scopus 로고    scopus 로고
    • Boosting and hard-core set construction
    • A. R. Klivans and R. A. Servedio. Boosting and Hard-Core Set Construction. Machine Learning, 51(3): 217-238, 2003.
    • (2003) Machine Learning , vol.51 , Issue.3 , pp. 217-238
    • Klivans, A.R.1    Servedio, R.A.2
  • 11
    • 0001549458 scopus 로고
    • On sets of integers containing no k elements in arithmetic progression
    • E. Szemerédi. On sets of integers containing no k elements in arithmetic progression. Acta Arithmetica, 27: 199-245, 1975.
    • (1975) Acta Arithmetica , vol.27 , pp. 199-245
    • Szemerédi, E.1
  • 13
    • 57049109249 scopus 로고    scopus 로고
    • The primes contain arbitrarily long polynomial progressions
    • T. Tao and T. Ziegler. The Primes Contain Arbitrarily Long Polynomial Progressions. Acta Mathematica, 201: 213305, 2008.
    • (2008) Acta Mathematica , vol.201 , pp. 213305
    • Tao, T.1    Ziegler., T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.