-
1
-
-
79960592203
-
-
Mislove, A., Lehmann, S., Ahn, Y.-Y., Onnela, J.-P. & Rosenquist, J. N. Pulse of the nation: US mood throughout the day inferred from Twitter http://www.ccs.neu.edu/home/amislove/twittermood/(2010).
-
(2010)
Pulse of the Nation: US Mood Throughout the Day Inferred from Twitter
-
-
Mislove, A.1
Lehmann, S.2
Ahn, Y.-Y.3
Onnela, J.-P.4
Rosenquist, J.N.5
-
2
-
-
84874434759
-
Tweetin' in the rain: Exploring societal-scale effects of weather on mood
-
Dublin, Ireland
-
Hannak, A. et al. Tweetin' in the rain: exploring societal-scale effects of weather on mood. In Proc. 6th Int. AAAI Conf. Weblogs Soc. Media, 479-482 (Dublin, Ireland, 2012).
-
(2012)
Proc. 6th Int. AAAI Conf. Weblogs Soc. Media
, pp. 479-482
-
-
Hannak, A.1
-
3
-
-
85028156346
-
Twitter as a corpus for sentiment analysis and opinion mining
-
European Language Resources Association (ELRA), Valletta, Malta
-
Pak, A. & Paroubek, P. Twitter as a corpus for sentiment analysis and opinion mining. In Proc. Seventh Int. Conf. Lang. Resour. Eval., pp. 19-21 (European Language Resources Association (ELRA), Valletta, Malta, 2010).
-
(2010)
Proc. Seventh Int. Conf. Lang. Resour. Eval.
, pp. 19-21
-
-
Pak, A.1
Paroubek, P.2
-
4
-
-
84901488705
-
Opinion dynamics on interacting networks: Media competition and social influence
-
Quattrociocchi, W., Caldarelli, G. & Scala, A. Opinion dynamics on interacting networks: media competition and social influence. Sci. Rep. 4, 4938, https://doi.org/10.1038/srep04938 (2014).
-
(2014)
Sci. Rep.
, vol.4
, pp. 4938
-
-
Quattrociocchi, W.1
Caldarelli, G.2
Scala, A.3
-
5
-
-
36448934449
-
ARSA: A sentiment-aware model for predicting sales performance using blogs
-
ACM Press, New York, New York, USA
-
Liu, Y., Huang, X., An, A. & Yu, X. ARSA: a sentiment-aware model for predicting sales performance using blogs. In Proc. 30th Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., 607 (ACM Press, New York, New York, USA, https://doi.org/10.1145/1277741.1277845 (2007).
-
(2007)
Proc. 30th Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr.
, vol.607
-
-
Liu, Y.1
Huang, X.2
An, A.3
Yu, X.4
-
6
-
-
79953102821
-
Twitter mood predicts the stock market
-
Bollen, J., Mao, H. & Zeng, X. Twitter mood predicts the stock market. J. Comput. Sci. 2, 1-8, https://doi.org/10.1016/j.jocs.2010.12.007 (2011).
-
(2011)
J. Comput. Sci.
, vol.2
, pp. 1-8
-
-
Bollen, J.1
Mao, H.2
Zeng, X.3
-
7
-
-
84922286895
-
When can social media lead financial markets?
-
Zheludev, I., Smith, R. & Aste, T. When can social media lead financial markets? Sci. Rep. 4, 4213, https://doi.org/10.1038/srep04213 (2014).
-
(2014)
Sci. Rep.
, vol.4
, pp. 4213
-
-
Zheludev, I.1
Smith, R.2
Aste, T.3
-
8
-
-
84946594788
-
The effects of twitter sentiment on stock price returns
-
Ranco, G., Aleksovski, D., Caldarelli, G., Grčar, M. & Mozetič, I. The effects of twitter sentiment on stock price returns. PLoS One 10, e0138441, https://doi.org/10.1371/journal.pone.0138441 (2015).
-
(2015)
PLoS One
, vol.10
-
-
Ranco, G.1
Aleksovski, D.2
Caldarelli, G.3
Grčar, M.4
Mozetič, I.5
-
9
-
-
84947486851
-
Coupled network approach to predictability of financial market returns and news sentiments
-
Curme, C., Stanley, H. E. & Vodenska, I. Coupled network approach to predictability of financial market returns and news sentiments. Int. J. Theor. Appl. Financ. 18, 1550043, https://doi.org/10.1142/S0219024915500430 (2015).
-
(2015)
Int. J. Theor. Appl. Financ.
, vol.18
, pp. 1550043
-
-
Curme, C.1
Stanley, H.E.2
Vodenska, I.3
-
10
-
-
84890614558
-
-
citeulike-article-id:7044833
-
O'Connor, B., Balasubramanyan, R., Routledge, B. R. & Smith, N. a. From tweets to polls: Linking text sentiment to public opinion time series. 122-129, DOI:citeulike-article-id:7044833 (2010).
-
(2010)
From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series
, pp. 122-129
-
-
O'Connor, B.1
Balasubramanyan, R.2
Routledge, B.R.3
Smith, N.A.4
-
11
-
-
81755187390
-
Election forecasts with Twitter: How 140 characters reflect the political landscape
-
Tumasjan, A., Sprenger, T. O., Sandner, P. G. & Welpe, I. M. Election forecasts with Twitter: how 140 characters reflect the political landscape. Soc. Sci. Comput. Rev. 29, 402-418, https://doi.org/10.1177/0894439310386557 (2011).
-
(2011)
Soc. Sci. Comput. Rev.
, vol.29
, pp. 402-418
-
-
Tumasjan, A.1
Sprenger, T.O.2
Sandner, P.G.3
Welpe, I.M.4
-
12
-
-
84898827663
-
Predicting US primary elections with Twitter
-
Lake Tahoe, Nevada
-
Shi, L., Agarwal, N., Agrawal, A., Garg, R. & Spoelstra, J. Predicting US primary elections with Twitter. In Proc. Work. Soc. Netw. Soc. Media Anal., 1-8 (Lake Tahoe, Nevada, 2012).
-
(2012)
Proc. Work. Soc. Netw. Soc. Media Anal.
, pp. 1-8
-
-
Shi, L.1
Agarwal, N.2
Agrawal, A.3
Garg, R.4
Spoelstra, J.5
-
14
-
-
84863500861
-
Characterizing and modeling an electoral campaign in the context of Twitter: 2011 Spanish presidential election as a case study
-
Borondo, J., Morales, A. J., Losada, J. C. & Benito, R. M. Characterizing and modeling an electoral campaign in the context of Twitter: 2011 spanish presidential election as a case study. Chaos 22, 023138, https://doi.org/10.1063/1.4729139 (2012).
-
(2012)
Chaos
, vol.22
, pp. 023138
-
-
Borondo, J.1
Morales, A.J.2
Losada, J.C.3
Benito, R.M.4
-
15
-
-
84900455161
-
Agenda diversity in social media discourse: A study of the 2012 Korean general election
-
Park, S., Ko, M., Lee, J. & Song, J. Agenda diversity in social media discourse: a study of the 2012 korean general election. In Proc. 7th Int. Conf. Web Soc. Media 486-495 (2012).
-
(2012)
Proc. 7th Int. Conf. Web Soc. Media
, pp. 486-495
-
-
Park, S.1
Ko, M.2
Lee, J.3
Song, J.4
-
16
-
-
84893121704
-
Understanding election candidate approval ratings using social media data
-
ACM Press, New York, New York, USA
-
Contractor, D. & Faruquie, T. A. Understanding election candidate approval ratings using social media data. In Proc. 22nd Int. Conf. World Wide Web - WWW '13 Companion, 189-190 (ACM Press, New York, New York, USA, https://doi.org/10.1145/2487788.2487883 (2013).
-
(2013)
Proc. 22nd Int. Conf. World Wide Web - WWW '13 Companion
, pp. 189-190
-
-
Contractor, D.1
Faruquie, T.A.2
-
17
-
-
84909592384
-
Towards passive political opinion polling using twitter
-
Thapen, N. A. & Ghanem, M. M. Towards passive political opinion polling using twitter. In CEUR Workshop Proc., vol. 1110, 19-34 (2013).
-
(2013)
CEUR Workshop Proc.
, vol.1110
, pp. 19-34
-
-
Thapen, N.A.1
Ghanem, M.M.2
-
18
-
-
84893329651
-
Politics, sharing and emotion in microblogs
-
ACM Press, New York, New York, USA
-
Hoang, T.-A., Cohen, W. W., Lim, E.-P., Pierce, D. & Redlawsk, D. P. Politics, sharing and emotion in microblogs. In Proc. 2013 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Min. 282-289 (ACM Press, New York, New York, USA, https://doi.org/10.1145/2492517.2492554 (2013).
-
(2013)
Proc. 2013 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Min.
, pp. 282-289
-
-
Hoang, T.-A.1
Cohen, W.W.2
Lim, E.-P.3
Pierce, D.4
Redlawsk, D.P.5
-
19
-
-
84893568611
-
Twitter public opinion, and the 2011 nigerian presidential election
-
IEEE
-
Fink, C., Bos, N., Perrone, A., Liu, E. & Kopecky, J. Twitter, public opinion, and the 2011 nigerian presidential election. In 2013 Int. Conf. Soc. Comput. 311-320, https://doi.org/10.1109/SocialCom.2013.50 (IEEE, 2013).
-
(2013)
2013 Int. Conf. Soc. Comput.
, pp. 311-320
-
-
Fink, C.1
Bos, N.2
Perrone, A.3
Liu, E.4
Kopecky, J.5
-
20
-
-
84885441657
-
A meta-analysis of state-of-the-art electoral prediction from Twitter data
-
Gayo-Avello, D. A meta-analysis of state-of-the-art electoral prediction from Twitter data. Soc. Sci. Comput. Rev. 31, 649-679, https://doi.org/10.1177/0894439313493979 (2013).
-
(2013)
Soc. Sci. Comput. Rev.
, vol.31
, pp. 649-679
-
-
Gayo-Avello, D.1
-
21
-
-
84900421600
-
A multi-level geographical study of Italian political elections from twitter data
-
Caldarelli, G. et al. A multi-level geographical study of italian political elections from twitter data. PLoS One 9, e95809, https://doi.org/10.1371/journal.pone.0095809 (2014).
-
(2014)
PLoS One
, vol.9
-
-
Caldarelli, G.1
-
22
-
-
84968763926
-
Content and network dynamics behind egyptian political polarization on twitter
-
ACM Press, New York, New York, USA
-
Borge-Holthoefer, J., Magdy, W., Darwish, K. & Weber, I. Content and network dynamics behind egyptian political polarization on twitter. In Proc. 18th ACM Conf. Comput. Support. Coop. Work Soc. Comput. 700-711 (ACM Press, New York, New York, USA, https://doi.org/10.1145/2675133.2675163 (2015).
-
(2015)
Proc. 18th ACM Conf. Comput. Support. Coop. Work Soc. Comput.
, pp. 700-711
-
-
Borge-Holthoefer, J.1
Magdy, W.2
Darwish, K.3
Weber, I.4
-
23
-
-
84925865652
-
Predicting elections for multiple countries using twitter and polls
-
Tsakalidis, A., Papadopoulos, S., Cristea, A. I. & Kompatsiaris, Y. Predicting elections for multiple countries using twitter and polls. IEEE Intell. Syst. 30, 10-17, https://doi.org/10.1109/MIS.2015.17 (2015).
-
(2015)
IEEE Intell. Syst.
, vol.30
, pp. 10-17
-
-
Tsakalidis, A.1
Papadopoulos, S.2
Cristea, A.I.3
Kompatsiaris, Y.4
-
24
-
-
84922802451
-
Using twitter sentiment to forecast the 2013 pakistani election and the 2014 indian election
-
Kagan, V., Stevens, A. & Subrahmanian, V. Using twitter sentiment to forecast the 2013 pakistani election and the 2014 indian election. IEEE Intell. Syst. 30, 2-5, https://doi.org/10.1109/MIS.2015.16 (2015).
-
(2015)
IEEE Intell. Syst.
, vol.30
, pp. 2-5
-
-
Kagan, V.1
Stevens, A.2
Subrahmanian, V.3
-
25
-
-
85048223775
-
Tweets & votes - A 4 country comparison of volumetric and sentiment analysis approcahes
-
Saifuddin, A., Kokil, J. & Marko, M. S. Tweets & votes - a 4 country comparison of volumetric and sentiment analysis approcahes. In Proc. 10th Int. Conf. Web Soc. Media, 507-510 (2016).
-
(2016)
Proc. 10th Int. Conf. Web Soc. Media
, pp. 507-510
-
-
Saifuddin, A.1
Kokil, J.2
Marko, M.S.3
-
26
-
-
84979503749
-
Deciphering the 2016 U.S. Presidential campaign in the Twitter sphere: A comparison of the trumpists and clintonists
-
Wang, Y., Li, Y. & Luo, J. Deciphering the 2016 U.S. presidential campaign in the Twitter sphere: a comparison of the trumpists and clintonists. In Proc. 10th Int. Conf. Web Soc. Media, 4 (2016).
-
(2016)
Proc. 10th Int. Conf. Web Soc. Media
, vol.4
-
-
Wang, Y.1
Li, Y.2
Luo, J.3
-
27
-
-
84979502171
-
Brexit? Analyzing opinion on the UK-eu referendum within Twitter
-
Llewellyn, C. & Cram, L. Brexit? analyzing opinion on the uk-eu referendum within Twitter. In Proc. 10th Int. Conf. Web Soc. Media, 760-761 (2016).
-
(2016)
Proc. 10th Int. Conf. Web Soc. Media
, pp. 760-761
-
-
Llewellyn, C.1
Cram, L.2
-
28
-
-
84860196341
-
Why the pirate party won the German election of 2009 or the trouble with predictions: A response to Tumasjan, A., Sprenger, T. O., Sander, P. G. & Welpe, I. M. "predicting elections with Twitter: What 140 characters reveal about political sentiment"
-
Jungherr, A., Jurgens, P. & Schoen, H. Why the pirate party won the german election of 2009 or the trouble with predictions: a response to Tumasjan, A., Sprenger, T. O., Sander, P. G. & Welpe, I. M. "predicting elections with Twitter: what 140 characters reveal about political sentiment". Soc. Sci. Comput. Rev. 30, 229-234, https://doi.org/10.1177/0894439311404119 (2012).
-
(2012)
Soc. Sci. Comput. Rev.
, vol.30
, pp. 229-234
-
-
Jungherr, A.1
Jurgens, P.2
Schoen, H.3
-
29
-
-
85019623369
-
Digital trace data in the study of public opinion: An indicator of attention toward politics rather than political support
-
0894439316631043
-
Jungherr, A., Schoen, H., Posegga, O. & Jurgens, P. Digital trace data in the study of public opinion: an indicator of attention toward politics rather than political support. Soc. Sci. Comput. Rev. 0894439316631043 (2016).
-
(2016)
Soc. Sci. Comput. Rev.
-
-
Jungherr, A.1
Schoen, H.2
Posegga, O.3
Jurgens, P.4
-
30
-
-
85008017089
-
AVA: Adjective-verb-adverb combinations for sentiment analysis
-
Subrahmanian, V. & Reforgiato, D. AVA: adjective-verb-adverb combinations for sentiment analysis. IEEE Intell. Syst. 23, 43-50, https://doi.org/10.1109/MIS.2008.57 (2008).
-
(2008)
IEEE Intell. Syst.
, vol.23
, pp. 43-50
-
-
Subrahmanian, V.1
Reforgiato, D.2
-
31
-
-
84885424614
-
Ranked WordNet graph for sentiment polarity classification in Twitter
-
Montejo-Ráez, A., Martínez-Cámara, E., Martín-Valdivia, M. T. & Ureña-López, L. A. Ranked WordNet graph for sentiment polarity classification in Twitter. Comput. Speech Lang. 28, 93-107, https://doi.org/10.1016/j.csl.2013.04.001 (2014).
-
(2014)
Comput. Speech Lang.
, vol.28
, pp. 93-107
-
-
Montejo-Ráez, A.1
Martínez-Cámara, E.2
Martín-Valdivia, M.T.3
Ureña-López, L.A.4
-
32
-
-
77649253939
-
The psychological meaning of words: LIWC and computerized text analysis methods
-
Tausczik, Y. R. & Pennebaker, J. W. The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29, 24-54, https://doi.org/10.1177/0261927X09351676 (2010).
-
(2010)
J. Lang. Soc. Psychol.
, vol.29
, pp. 24-54
-
-
Tausczik, Y.R.1
Pennebaker, J.W.2
-
33
-
-
84927125364
-
Signals of public opinion in online communication: A comparison of methods and data sources
-
Gonzalez-Bailon, S. & Paltoglou, G. Signals of public opinion in online communication: a comparison of methods and data sources. Ann. Am. Acad. Pol. Soc. Sci. 659, 95-107, https://doi.org/10.1177/0002716215569192 (2015).
-
(2015)
Ann. Am. Acad. Pol. Soc. Sci.
, vol.659
, pp. 95-107
-
-
Gonzalez-Bailon, S.1
Paltoglou, G.2
-
34
-
-
84920973079
-
Using sentiment analysis to monitor electoral campaigns: Method matters-evidence from the United States and Italy
-
Ceron, A., Curini, L. & Iacus, S. M. Using sentiment analysis to monitor electoral campaigns: method matters-evidence from the united states and italy. Soc. Sci. Comput. Rev. 33, 3-20, https://doi.org/10.1177/0894439314521983 (2015).
-
(2015)
Soc. Sci. Comput. Rev.
, vol.33
, pp. 3-20
-
-
Ceron, A.1
Curini, L.2
Iacus, S.M.3
-
35
-
-
84987639443
-
Predicting and Interpolating state-level polls using Twitter textual data
-
Beauchamp, N. Predicting and Interpolating state-level polls using Twitter textual data. Am. J. Pol. Sci. 00, 1-14, https://doi.org/10.1111/ajps.12274 (2016).
-
(2016)
Am. J. Pol. Sci.
, pp. 1-14
-
-
Beauchamp, N.1
-
36
-
-
84945942743
-
Twitter language use reflects psychological differences between democrats and republicans
-
Sylwester, K. & Purver, M. Twitter language use reflects psychological differences between democrats and republicans. PLoS One 10, 1-18, https://doi.org/10.1371/journal.pone.0137422 (2015).
-
(2015)
PLoS One
, vol.10
, pp. 1-18
-
-
Sylwester, K.1
Purver, M.2
-
37
-
-
84974851734
-
ISA: A fast, scalable and accurate algorithm for sentiment analysis of social media content
-
Ceron, A., Curini, L. & Iacus, S. M. ISA: A fast, scalable and accurate algorithm for sentiment analysis of social media content. Inf. Sci. (Ny). 367-368, 105-124, https://doi.org/10.1016/j.ins.2016.05.052 (2016).
-
(2016)
Inf. Sci. (Ny).
, vol.367-368
, pp. 105-124
-
-
Ceron, A.1
Curini, L.2
Iacus, S.M.3
-
39
-
-
73649109957
-
A method of automated nonparametric content analysis for social science
-
Hopkins, D. J. & King, G. A method of automated nonparametric content analysis for social science. Am. J. Pol. Sci. 54, 229-247, https://doi.org/10.1111/j.1540-5907.2009.00428.x (2010).
-
(2010)
Am. J. Pol. Sci.
, vol.54
, pp. 229-247
-
-
Hopkins, D.J.1
King, G.2
-
40
-
-
85048216785
-
-
New York Times, [Online; accessed 24-April-2017]
-
New York Times. New York Times National Polling Average http://www.nytimes.com/interactive/2016/us/elections/polls.html [Online; accessed 24-April-2017] (2016).
-
(2016)
New York Times National Polling Average
-
-
-
41
-
-
85020159867
-
-
chap. 3, Taylor & Francis
-
Ceron, A., Curini, L. & Iacus, S. Politics and Big Data: Nowcasting and Forecasting Elections with Social Media, chap. 3 (Taylor & Francis, 2017).
-
(2017)
Politics and Big Data: Nowcasting and Forecasting Elections with Social Media
-
-
Ceron, A.1
Curini, L.2
Iacus, S.3
-
42
-
-
84903996783
-
Searching for superspreaders of information in real-world social media
-
Pei, S., Muchnik, L., Andrade, J. S. Jr., Zheng, Z. & Makse, H. A. Searching for superspreaders of information in real-world social media. Sci. Rep. 4, 5547, https://doi.org/10.1038/srep05547 (2014).
-
(2014)
Sci. Rep.
, vol.4
, pp. 5547
-
-
Pei, S.1
Muchnik, L.2
Andrade, J.S.3
Zheng, Z.4
Makse, H.A.5
-
45
-
-
34548856552
-
Near linear time algorithm to detect community structures in large-scale networks
-
Raghavan, U. N. & Albert, R. & Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 76, 1-11, https://doi.org/10.1103/PhysRevE.76.036106 (2007).
-
(2007)
Phys. Rev. e - Stat. Nonlinear, Soft Matter Phys.
, vol.76
, pp. 1-11
-
-
Raghavan, U.N.1
Albert, R.2
Kumara, S.3
-
46
-
-
56349094785
-
Fast unfolding of communities in large networks
-
Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008, https://doi.org/10.1088/1742-5468/2008/10/P10008 (2008).
-
(2008)
J. Stat. Mech. Theory Exp.
, vol.2008
, pp. P10008
-
-
Blondel, V.D.1
Guillaume, J.-L.2
Lambiotte, R.3
Lefebvre, E.4
-
47
-
-
37649028224
-
Finding and evaluating community structure in networks
-
Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Physical Review E 69, 026113, https://doi.org/10.1103/PhysRevE.69.026113 (2004).
-
(2004)
Physical Review e
, vol.69
, pp. 026113
-
-
Newman, M.E.J.1
Girvan, M.2
-
48
-
-
84944454295
-
Tweeting from left to right
-
Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A. & Bonneau, R. Tweeting from left to right. Psychol. Sci. 26, 1531-1542, https://doi.org/10.1177/0956797615594620 (2015).
-
(2015)
Psychol. Sci.
, vol.26
, pp. 1531-1542
-
-
Barberá, P.1
Jost, J.T.2
Nagler, J.3
Tucker, J.A.4
Bonneau, R.5
-
51
-
-
85046847958
-
Predicting the brexit vote by tracking and classifying public opinion using twitter data
-
Amador Diaz Lopez, J. C., Collignon-Delmar, S., Benoit, K. & Matsuo, A. Predicting the Brexit Vote by Tracking and Classifying Public Opinion Using Twitter Data. Statistics, Politics and Policy 8, 85-104, https://doi.org/10.1515/spp-2017-0006 (2017).
-
(2017)
Statistics, Politics and Policy
, vol.8
, pp. 85-104
-
-
Amador Diaz Lopez, J.C.1
Collignon-Delmar, S.2
Benoit, K.3
Matsuo, A.4
-
52
-
-
85011333384
-
The pulse of the people
-
Bohannon, J. The pulse of the people. Science 355, 470-472, https://doi.org/10.1126/science.355.6324.470 (2017).
-
(2017)
Science
, vol.355
, pp. 470-472
-
-
Bohannon, J.1
-
53
-
-
85011597216
-
Prediction and its limits
-
Jasny, B. R. & Stone, R. Prediction and its limits. Science 355, 468-469, https://doi.org/10.1126/science.355.6324.468 (2017).
-
(2017)
Science
, vol.355
, pp. 468-469
-
-
Jasny, B.R.1
Stone, R.2
-
54
-
-
83055179484
-
Topic sentiment analysis in twitter
-
ACM Press, New York, New York, USA
-
Wang, X., Wei, F., Liu, X., Zhou, M. & Zhang, M. Topic sentiment analysis in twitter. In Proc. 20th ACM Int. Conf. Inf. Knowl. Manag., 1031 (ACM Press, New York, New York, USA, https://doi.org/10.1145/2063576.2063726 (2011).
-
(2011)
Proc. 20th ACM Int. Conf. Inf. Knowl. Manag.
, vol.1031
-
-
Wang, X.1
Wei, F.2
Liu, X.3
Zhou, M.4
Zhang, M.5
-
55
-
-
85048244789
-
-
Pew Research Center, [Online; accessed 5-October-2016]
-
Pew Research Center. Assessing the representativeness of public opinion surveys http://www.people-press.org/2012/05/15/assessing-the-representativeness-of-public-opinion-surveys. [Online; accessed 5-October-2016] (2013).
-
(2013)
Assessing the Representativeness of Public Opinion Surveys
-
-
-
56
-
-
84870398813
-
Partisan asymmetries in online political activity
-
Conover, M. D., Gonçalves, B., Flammini, A. & Menczer, F. Partisan asymmetries in online political activity. EPJ Data Sci. 1, 6, https://doi.org/10.1140/epjds6 (2012).
-
(2012)
EPJ Data Sci.
, vol.1
, pp. 6
-
-
Conover, M.D.1
Gonçalves, B.2
Flammini, A.3
Menczer, F.4
-
57
-
-
85012077372
-
-
Pew Research Center, [Online; accessed 7-March-2017]
-
Pew Research Center. Social media update 2016 http://www.pewinternet.org/2016/11/11/social-media-update-2016/. [Online; accessed 7-March-2017] (2016).
-
(2016)
Social Media Update 2016
-
-
-
58
-
-
84892704954
-
Is the sample good enough? Comparing data from Twitter's streaming API with Twitter's firehose
-
Morstatter, F., Pfeffer, J., Liu, H. & Carley, K. Is the sample good enough? Comparing data from Twitter's streaming API with Twitter's firehose. In Proc. Seventh Int. AAAI Conf. Weblogs Soc. Media 400-408 https://doi.org/10.1007/978-3-319-05579-4-10 (2013).
-
(2013)
Proc. Seventh Int. AAAI Conf. Weblogs Soc. Media
, pp. 400-408
-
-
Morstatter, F.1
Pfeffer, J.2
Liu, H.3
Carley, K.4
-
59
-
-
85048239042
-
-
Twitter Documentation, [Online; accessed 26-February-2018]
-
Twitter Documentation. Twitter API authentication https://developer.twitter.com/en/docs/basics/authentication/guides/accesstokens [Online; accessed 26-February-2018] (2018).
-
(2018)
Twitter API Authentication
-
-
-
60
-
-
85048228977
-
-
Twitter Documentation, [Online; accessed 26-February-2018]
-
Twitter Documentation. Tweet object https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object [Online; accessed 26-February-2018] (2018).
-
(2018)
Tweet Object
-
-
-
61
-
-
85026345290
-
Online human-bot interactions: Detection, estimation, and characterization
-
Varol, O., Ferrara, E., Davis, C. A., Menczer, F. & Flammini, A. Online human-bot interactions: detection, estimation, and characterization. In Proc. 11th Int. AAAI Conf. Weblogs Soc. Media 280-289 (2017).
-
(2017)
Proc. 11th Int. AAAI Conf. Weblogs Soc. Media
, pp. 280-289
-
-
Varol, O.1
Ferrara, E.2
Davis, C.A.3
Menczer, F.4
Flammini, A.5
-
62
-
-
80054973777
-
Disentangling categorical relationships through a graph of co-occurrences
-
Martinez-Romo, J. et al. Disentangling categorical relationships through a graph of co-occurrences. Phys. Rev. E 84, 1-8, https://doi.org/10.1103/PhysRevE.84.046108 (2011).
-
(2011)
Phys. Rev. e
, vol.84
, pp. 1-8
-
-
Martinez-Romo, J.1
-
63
-
-
84863165439
-
-
Springer New York, New York, NY
-
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning, vol. 1 of Springer Series in Statistics (Springer New York, New York, NY, 2009).
-
(2009)
The Elements of Statistical Learning of Springer Series in Statistics
, vol.1
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
64
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825-2830 (2011).
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
|