메뉴 건너뛰기




Volumn 61, Issue 2, 2017, Pages 490-503

Predicting and Interpolating State-Level Polls Using Twitter Textual Data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84987639443     PISSN: 00925853     EISSN: 15405907     Source Type: Journal    
DOI: 10.1111/ajps.12274     Document Type: Article
Times cited : (96)

References (34)
  • 1
  • 2
    • 85016778725 scopus 로고
    • Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
    • Benjamini, Yoav, and Yosef Hochberg. 1995. “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society: Series B (Methodological) 57(1): 289–300.
    • (1995) Journal of the Royal Statistical Society: Series B (Methodological) , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, Leo. 2001. “Random Forests.” Machine Learning 45(1): 5–32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 84894238224 scopus 로고    scopus 로고
    • Every Tweet Counts? How Sentiment Analysis of Social Media Can Improve Our Knowledge of Citizens' Political Preferences with an Application to Italy and France
    • Ceron, Andrea, Luigi Curini, Stefano M. Iacus, and Giuseppe Porro. 2014. “Every Tweet Counts? How Sentiment Analysis of Social Media Can Improve Our Knowledge of Citizens' Political Preferences with an Application to Italy and France.” New Media & Society 16(2): 340–58.
    • (2014) New Media & Society , vol.16 , Issue.2 , pp. 340-358
    • Ceron, A.1    Curini, L.2    Iacus, S.M.3    Porro, G.4
  • 8
    • 84870398813 scopus 로고    scopus 로고
    • Partisan Asymmetries in Online Political Activity
    • Conover, Michael D., Bruno Gonçalves, Alessandro Flammini, and Filippo Menczer. 2012. “Partisan Asymmetries in Online Political Activity.” EPJ Data Science 1(1): 1–19.
    • (2012) EPJ Data Science , vol.1 , Issue.1 , pp. 1-19
    • Conover, M.D.1    Gonçalves, B.2    Flammini, A.3    Menczer, F.4
  • 9
    • 34249753618 scopus 로고
    • Support Vector Machine
    • Cortes, Corinna, and Vladimir Vapnik. 1995. “Support Vector Machine.” Machine Learning 20(3): 273–97.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 84885441657 scopus 로고    scopus 로고
    • A Meta-Analysis of State-of-the-Art Electoral Prediction from Twitter Data
    • Gayo-Avello, Daniel. 2013. “A Meta-Analysis of State-of-the-Art Electoral Prediction from Twitter Data.” Social Science Computer Review 31(6): 649–79.
    • (2013) Social Science Computer Review , vol.31 , Issue.6 , pp. 649-679
    • Gayo-Avello, D.1
  • 14
    • 84879837698 scopus 로고    scopus 로고
    • Deep Interactions with MRP: Election Turnout and Voting Patterns among Small Electoral Subgroups
    • Ghitza, Yair, and Andrew Gelman. 2013. “Deep Interactions with MRP: Election Turnout and Voting Patterns among Small Electoral Subgroups.” American Journal of Political Science 57(3): 762–76.
    • (2013) American Journal of Political Science , vol.57 , Issue.3 , pp. 762-776
    • Ghitza, Y.1    Gelman, A.2
  • 19
    • 65749090303 scopus 로고    scopus 로고
    • Pundits, Ideologues, and Ranters: The British Columbia Election Online
    • Jansen, Harold J., and Royce Koop. 2005. “Pundits, Ideologues, and Ranters: The British Columbia Election Online.” Canadian Journal of Communication 30(4): 613–32.
    • (2005) Canadian Journal of Communication , vol.30 , Issue.4 , pp. 613-632
    • Jansen, H.J.1    Koop, R.2
  • 20
    • 84860196341 scopus 로고    scopus 로고
    • Why the Pirate Party Won the German Election of 2009
    • Jungherr, Andreas, Pascal Jürgens, and Harald Schoen. 2012. “Why the Pirate Party Won the German Election of 2009.” Social Science Computer Review 30(2): 229–34.
    • (2012) Social Science Computer Review , vol.30 , Issue.2 , pp. 229-234
    • Jungherr, A.1    Jürgens, P.2    Schoen, H.3
  • 21
    • 33646386611 scopus 로고    scopus 로고
    • Connections between Internet Use and Political Efficacy, Knowledge, and Participation
    • Kenski, Kate, and Natalie Jomini Stroud. 2006. “Connections between Internet Use and Political Efficacy, Knowledge, and Participation.” Journal of Broadcasting & Electronic Media 50(2): 173–92.
    • (2006) Journal of Broadcasting & Electronic Media , vol.50 , Issue.2 , pp. 173-192
    • Kenski, K.1    Stroud, N.J.2
  • 22
    • 58049139116 scopus 로고    scopus 로고
    • How Should We Estimate Public Opinion in the States
    • Lax, Jeffrey R., and Justin H. Phillips. 2009. “How Should We Estimate Public Opinion in the States?” American Journal of Political Science 53(1): 107–21.
    • (2009) American Journal of Political Science , vol.53 , Issue.1 , pp. 107-121
    • Lax, J.R.1    Phillips, J.H.2
  • 23
    • 84896056107 scopus 로고    scopus 로고
    • The Parable of Google Flu: Traps in Big Data Analysis
    • Lazer, David, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014. “The Parable of Google Flu: Traps in Big Data Analysis.” Science 343(6176): 1203–05.
    • (2014) Science , vol.343 , Issue.6176 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 27
    • 84890614558 scopus 로고    scopus 로고
    • From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series
    • ” I
    • O'Connor, Brendan, Ramnath Balasubramanyan, Bryan R. Routledge, and Noah A. Smith. 2010. “From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series.” ICWSM 11: 122–29.
    • (2010) CWSM , vol.11 , pp. 122-129
    • O'Connor, B.1    Balasubramanyan, R.2    Routledge, B.R.3    Smith, N.A.4
  • 28
    • 21144438842 scopus 로고    scopus 로고
    • Bayesian Multilevel Estimation with Poststratication: State-Level Estimates from National Polls
    • Park, David K., Andrew Gelman, and Joseph Bafumi. 2004. “Bayesian Multilevel Estimation with Poststratication: State-Level Estimates from National Polls.” Political Analysis 12(4): 375–85.
    • (2004) Political Analysis , vol.12 , Issue.4 , pp. 375-385
    • Park, D.K.1    Gelman, A.2    Bafumi, J.3
  • 29
    • 85064472811 scopus 로고    scopus 로고
    • A Machine Learning Approach to Twitter User Classification
    • Pennacchiotti, Marco, and Ana-Maria Popescu. 2011. “A Machine Learning Approach to Twitter User Classification.” ICWSM 11: 281–88.
    • (2011) ICWSM , vol.11 , pp. 281-288
    • Pennacchiotti, M.1    Popescu, A.-M.2
  • 32
    • 84890668120 scopus 로고    scopus 로고
    • Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment
    • Tumasjan, Andranik, Timm Oliver Sprenger, Philipp G. Sandner, and Isabell M. Welpe. 2010. “Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment.” ICWSM 10: 178–85.
    • (2010) ICWSM , vol.10 , pp. 178-185
    • Tumasjan, A.1    Sprenger, T.O.2    Sandner, P.G.3    Welpe, I.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.