-
1
-
-
0015514472
-
The Fluid Mosaic Model of the Structure of Cell Membranes
-
Singer, S. J., and G. L. Nicolson. “The Fluid Mosaic Model of the Structure of Cell Membranes.” Science 175, no. 4023 (1972): 720–31.
-
(1972)
Science
, vol.175
, Issue.4023
, pp. 720-731
-
-
Singer, S.J.1
Nicolson, G.L.2
-
2
-
-
2942625797
-
Plasma Membrane Microdomains: Organization, Function and Trafficking
-
Laude, A. J., and I. A. Prior. “Plasma Membrane Microdomains: Organization, Function and Trafficking.” Mol Membr Biol 21, no. 3 (2004): 193–205.
-
(2004)
Mol Membr Biol
, vol.21
, Issue.3
, pp. 193-205
-
-
Laude, A.J.1
Prior, I.A.2
-
3
-
-
74849118341
-
Lipid Rafts as a Membrane-Organizing Principle
-
Lingwood, D., and K. Simons. “Lipid Rafts as a Membrane-Organizing Principle.” Science 327, no. 5961 (2010): 46–50.
-
(2010)
Science
, vol.327
, Issue.5961
, pp. 46-50
-
-
Lingwood, D.1
Simons, K.2
-
5
-
-
84870188756
-
Dynamic Organizing Principles of the Plasma Membrane That Regulate Signal Transduction: Commemorating the Fortieth Anniversary of Singer and Nicolson’s Fluid-Mosaic Model
-
Kusumi, A., T. K. Fujiwara, R. Chadda et al. “Dynamic Organizing Principles of the Plasma Membrane That Regulate Signal Transduction: Commemorating the Fortieth Anniversary of Singer and Nicolson’s Fluid-Mosaic Model.” Annu Rev Cell Dev Biol 28 (2012): 215–50.
-
(2012)
Annu Rev Cell Dev Biol
, vol.28
, pp. 215-250
-
-
Kusumi, A.1
Fujiwara, T.K.2
Chadda, R.3
-
6
-
-
0037310188
-
Functional Domains in Tetraspanin Proteins
-
Stipp, C. S., T. V. Kolesnikova, and M. E. Hemler. “Functional Domains in Tetraspanin Proteins.” Trends Biochem Sci 28, no. 2 (2003): 106–12.
-
(2003)
Trends Biochem Sci
, vol.28
, Issue.2
, pp. 106-112
-
-
Stipp, C.S.1
Kolesnikova, T.V.2
Hemler, M.E.3
-
8
-
-
0242302578
-
Tetraspanins: Molecular Organisers of the Leukocyte Surface
-
Tarrant, J. M., L. Robb, A. B. van Spriel, and M. D. Wright. “Tetraspanins: Molecular Organisers of the Leukocyte Surface.” Trends Immunol 24, no. 11 (2003): 610–7.
-
(2003)
Trends Immunol
, vol.24
, Issue.11
, pp. 610-617
-
-
Tarrant, J.M.1
Robb, L.2
Van Spriel, A.B.3
Wright, M.D.4
-
9
-
-
28444441957
-
Tetraspanin Functions and Associated Microdomains
-
Hemler, M. E. “Tetraspanin Functions and Associated Microdomains.” Nat Rev Mol Cell Biol 6, no. 10 (2005): 801–11.
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, Issue.10
, pp. 801-811
-
-
Hemler, M.E.1
-
10
-
-
13444259476
-
The Tetraspanin Web Modulates Immune-Signalling Complexes
-
Levy, S., and T. Shoham. “The Tetraspanin Web Modulates Immune-Signalling Complexes.” Nat Rev Immunol 5, no. 2 (2005): 136–48.
-
(2005)
Nat Rev Immunol
, vol.5
, Issue.2
, pp. 136-148
-
-
Levy, S.1
Shoham, T.2
-
11
-
-
0344708475
-
Tetraspanin Proteins Mediate Cellular Penetration, Invasion, and Fusion Events and Define a Novel Type of Membrane Microdomain
-
Hemler, M. E. “Tetraspanin Proteins Mediate Cellular Penetration, Invasion, and Fusion Events and Define a Novel Type of Membrane Microdomain.” Annu Rev Cell Dev Biol 19 (2003): 397–422.
-
(2003)
Annu Rev Cell Dev Biol
, vol.19
, pp. 397-422
-
-
Hemler, M.E.1
-
12
-
-
66549084069
-
Lateral Organization of Membrane Proteins: Tetraspanins Spin Their Web
-
Charrin, S., F. le Naour, O. Silvie et al. “Lateral Organization of Membrane Proteins: Tetraspanins Spin Their Web.” Biochem J 420, no. 2 (2009): 133–54.
-
(2009)
Biochem J
, vol.420
, Issue.2
, pp. 133-154
-
-
Charrin, S.1
Le Naour, F.2
Silvie, O.3
-
13
-
-
33745837412
-
EWI-2 and EWI-F Link the Tetraspanin Web to the Actin Cytoskeleton through Their Direct Association with Ezrin–Radixin–Moesin Proteins
-
Sala-Valdes, M., A. Ursa, S. Charrin et al. “EWI-2 and EWI-F Link the Tetraspanin Web to the Actin Cytoskeleton through Their Direct Association with Ezrin–Radixin–Moesin Proteins.” J Biol Chem 281, no. 28 (2006): 19665–75.
-
(2006)
J Biol Chem
, vol.281
, Issue.28
, pp. 19665-19675
-
-
Sala-Valdes, M.1
Ursa, A.2
Charrin, S.3
-
14
-
-
0035896648
-
Evaluation of Prototype Transmembrane 4 Superfamily Protein Complexes and Their Relation to Lipid Rafts
-
Claas, C., C. S. Stipp, and M. E. Hemler. “Evaluation of Prototype Transmembrane 4 Superfamily Protein Complexes and Their Relation to Lipid Rafts.” J Biol Chem 276, no. 11 (2001): 7974–84.
-
(2001)
J Biol Chem
, vol.276
, Issue.11
, pp. 7974-7984
-
-
Claas, C.1
Stipp, C.S.2
Hemler, M.E.3
-
15
-
-
33845975257
-
Membrane Microdomains and Proteomics: Lessons from Tetraspanin Microdomains and Comparison with Lipid Rafts
-
Le Naour, F., M. Andre, C. Boucheix, and E. Rubinstein. “Membrane Microdomains and Proteomics: Lessons from Tetraspanin Microdomains and Comparison with Lipid Rafts.” Proteomics 6, no. 24 (2006): 6447–54.
-
(2006)
Proteomics
, vol.6
, Issue.24
, pp. 6447-6454
-
-
Le Naour, F.1
Andre, M.2
Boucheix, C.3
Rubinstein, E.4
-
16
-
-
50249151891
-
Single-Molecule Analysis of CD9 Dynamics and Partitioning Reveals Multiple Modes of Interaction in the Tetraspanin Web
-
Espenel, C., E. Margeat, P. Dosset et al. “Single-Molecule Analysis of CD9 Dynamics and Partitioning Reveals Multiple Modes of Interaction in the Tetraspanin Web.” J Cell Biol 182, no. 4 (2008): 765–76.
-
(2008)
J Cell Biol
, vol.182
, Issue.4
, pp. 765-776
-
-
Espenel, C.1
Margeat, E.2
Dosset, P.3
-
17
-
-
0141650520
-
A Physical and Functional Link between Cholesterol and Tetraspanins
-
Charrin, S., S. Manie, C. Thiele et al. “A Physical and Functional Link between Cholesterol and Tetraspanins.” Eur J Immunol 33, no. 9 (2003): 2479–89.
-
(2003)
Eur J Immunol
, vol.33
, Issue.9
, pp. 2479-2489
-
-
Charrin, S.1
Manie, S.2
Thiele, C.3
-
18
-
-
84897023823
-
Microdomains in the membrane landscape shape antigen-presenting cell function
-
Zuidscherwoude, M., C. M. de Winde, A. Cambi, and A. B. van Spriel. “Microdomains in the membrane landscape shape antigen-presenting cell function.” J Leukoc Biol 95, no. 2 (2014): 251–63.
-
(2014)
J Leukoc Biol
, vol.95
, Issue.2
, pp. 251-263
-
-
Zuidscherwoude, M.1
De Winde, C.M.2
Cambi, A.3
Van Spriel, A.B.4
-
19
-
-
69549088095
-
Tetraspanin-Enriched Microdomains: A Functional Unit in Cell Plasma Membranes
-
Yanez-Mo, M., O. Barreiro, M. Gordon-Alonso, M. Sala-Valdes, and F. Sanchez-Madrid. “Tetraspanin-Enriched Microdomains: A Functional Unit in Cell Plasma Membranes.” Trends Cell Biol 19, no. 9 (2009): 434–46.
-
(2009)
Trends Cell Biol
, vol.19
, Issue.9
, pp. 434-446
-
-
Yanez-Mo, M.1
Barreiro, O.2
Gordon-Alonso, M.3
Sala-Valdes, M.4
Sanchez-Madrid, F.5
-
20
-
-
56149120891
-
Endothelial Adhesion Receptors Are Recruited to Adherent Leukocytes by Inclusion in Preformed Tetraspanin Nanoplatforms
-
Barreiro, O., M. Zamai, M. Yanez-Mo et al. “Endothelial Adhesion Receptors Are Recruited to Adherent Leukocytes by Inclusion in Preformed Tetraspanin Nanoplatforms.” J Cell Biol 183, no. 3 (2008): 527–42.
-
(2008)
J Cell Biol
, vol.183
, Issue.3
, pp. 527-542
-
-
Barreiro, O.1
Zamai, M.2
Yanez-Mo, M.3
-
21
-
-
70350302606
-
Caught in the Act: Quantifying Protein Behaviour in Living Cells
-
Lidke, D. S., and B. S. Wilson. “Caught in the Act: Quantifying Protein Behaviour in Living Cells.” Trends Cell Biol 19, no. 11 (2009): 566–74.
-
(2009)
Trends Cell Biol
, vol.19
, Issue.11
, pp. 566-574
-
-
Lidke, D.S.1
Wilson, B.S.2
-
22
-
-
0035798702
-
Analysis of the CD151-Alpha3beta1 Integrin and CD151-Tetraspanin Interactions by Mutagenesis
-
Berditchevski, F., E. Gilbert, M. R. Griffiths et al. “Analysis of the CD151-Alpha3beta1 Integrin and CD151-Tetraspanin Interactions by Mutagenesis.” J Biol Chem 276, no. 44 (2001): 41165–74.
-
(2001)
J Biol Chem
, vol.276
, Issue.44
, pp. 41165-41174
-
-
Berditchevski, F.1
Gilbert, E.2
Griffiths, M.R.3
-
23
-
-
0037087710
-
Association of the Tetraspanin CD151 with the Laminin-Binding Integrins Alpha3beta1, Alpha6beta1, Alpha6beta4 and Alpha7beta1 in Cells in Culture and In Vivo
-
Sterk, L. M., C. A. Geuijen, J. G. van den Berg et al. “Association of the Tetraspanin CD151 with the Laminin-Binding Integrins Alpha3beta1, Alpha6beta1, Alpha6beta4 and Alpha7beta1 in Cells in Culture and In Vivo.” J Cell Sci 115, Pt 6 (2002): 1161–73.
-
(2002)
J Cell Sci
, vol.115
, pp. 1161-1173
-
-
Sterk, L.M.1
Geuijen, C.A.2
Van Den Berg, J.G.3
-
24
-
-
0034658462
-
The Tetraspan Molecule CD151, a Novel Constituent of Hemidesmosomes, Associates with the Integrin Alpha6beta4 and May Regulate the Spatial Organization of Hemidesmosomes
-
Sterk, L. M., C. A. Geuijen, L. C. Oomen et al. “The Tetraspan Molecule CD151, a Novel Constituent of Hemidesmosomes, Associates with the Integrin Alpha6beta4 and May Regulate the Spatial Organization of Hemidesmosomes.” J Cell Biol 149, no. 4 (2000): 969–82.
-
(2000)
J Cell Biol
, vol.149
, Issue.4
, pp. 969-982
-
-
Sterk, L.M.1
Geuijen, C.A.2
Oomen, L.C.3
-
25
-
-
11244304502
-
Palmitoylation Supports Assembly and Function of Integrin-Tetraspanin Complexes
-
Yang, X., O. V. Kovalenko, W. Tang et al. “Palmitoylation Supports Assembly and Function of Integrin-Tetraspanin Complexes.” J Cell Biol 167, no. 6 (2004): 1231–40.
-
(2004)
J Cell Biol
, vol.167
, Issue.6
, pp. 1231-1240
-
-
Yang, X.1
Kovalenko, O.V.2
Tang, W.3
-
26
-
-
0037020085
-
Expression of the Palmitoylation-Deficient CD151 Weakens the Association of Alpha 3 Beta 1 Integrin with the Tetraspanin-Enriched Microdomains and Affects Integrin-Dependent Signaling
-
Berditchevski, F., E. Odintsova, S. Sawada, and E. Gilbert. “Expression of the Palmitoylation-Deficient CD151 Weakens the Association of Alpha 3 Beta 1 Integrin with the Tetraspanin-Enriched Microdomains and Affects Integrin-Dependent Signaling.” J Biol Chem 277, no. 40 (2002): 36991–7000.
-
(2002)
J Biol Chem
, vol.277
, Issue.40
, pp. 36991-37000
-
-
Berditchevski, F.1
Odintsova, E.2
Sawada, S.3
Gilbert, E.4
-
27
-
-
84869395208
-
The Tetraspanin CD37 Orchestrates the Alpha(4)Beta(1) Integrin-Akt Signaling Axis and Supports Long-Lived Plasma Cell Survival
-
van Spriel, A. B., S. de Keijzer, A. van der Schaaf et al. “The Tetraspanin CD37 Orchestrates the Alpha(4)Beta(1) Integrin-Akt Signaling Axis and Supports Long-Lived Plasma Cell Survival.” Sci Signal 5, no. 250 (2012): ra82.
-
(2012)
Sci Signal
, vol.5
, Issue.250
, pp. 82
-
-
Van Spriel, A.B.1
De Keijzer, S.2
Van Der Schaaf, A.3
-
28
-
-
79953206314
-
Tetraspanins in the Humoral Immune Response
-
van Spriel, A. B. “Tetraspanins in the Humoral Immune Response.” Biochem Soc Trans 39, no. 2 (2011): 512–7.
-
(2011)
Biochem Soc Trans
, vol.39
, Issue.2
, pp. 512-517
-
-
Van Spriel, A.B.1
-
29
-
-
0345803938
-
The CD81 Tetraspanin Facilitates Instantaneous Leukocyte VLA-4 Adhesion Strengthening to Vascular Cell Adhesion Molecule 1 (VCAM-1) under Shear Flow
-
Feigelson, S. W., V. Grabovsky, R. Shamri, S. Levy, and R. Alon. “The CD81 Tetraspanin Facilitates Instantaneous Leukocyte VLA-4 Adhesion Strengthening to Vascular Cell Adhesion Molecule 1 (VCAM-1) under Shear Flow.” J Biol Chem 278, no. 51 (2003): 51203–12.
-
(2003)
J Biol Chem
, vol.278
, Issue.51
, pp. 51203-51212
-
-
Feigelson, S.W.1
Grabovsky, V.2
Shamri, R.3
Levy, S.4
Alon, R.5
-
30
-
-
0026758271
-
The CD19/CD21 Signal Transducing Complex of Human B Lymphocytes Includes the Target of Antiproliferative Antibody-1 and Leu-13 Molecules
-
Bradbury, L. E., G. S. Kansas, S. Levy, R. L. Evans, and T. F. Tedder. “The CD19/CD21 Signal Transducing Complex of Human B Lymphocytes Includes the Target of Antiproliferative Antibody-1 and Leu-13 Molecules.” J Immunol 149, no. 9 (1992): 2841–50.
-
(1992)
J Immunol
, vol.149
, Issue.9
, pp. 2841-2850
-
-
Bradbury, L.E.1
Kansas, G.S.2
Levy, S.3
Evans, R.L.4
Tedder, T.F.5
-
31
-
-
77951146803
-
CD81 Gene Defect in Humans Disrupts CD19 Complex Formation and Leads to Antibody Deficiency
-
van Zelm, M. C., J. Smet, B. Adams et al. “CD81 Gene Defect in Humans Disrupts CD19 Complex Formation and Leads to Antibody Deficiency.” J Clin Invest 120, no. 4 (2010): 1265–74.
-
(2010)
J Clin Invest
, vol.120
, Issue.4
, pp. 1265-1274
-
-
Van Zelm, M.C.1
Smet, J.2
Adams, B.3
-
32
-
-
32044459101
-
Building of the Tetraspanin Web: Distinct Structural Domains of CD81 Function in Different Cellular Compartments
-
Shoham, T., R. Rajapaksa, C. C. Kuo, J. Haimovich, and S. Levy. “Building of the Tetraspanin Web: Distinct Structural Domains of CD81 Function in Different Cellular Compartments.” Mol Cell Biol 26, no. 4 (2006): 1373–85.
-
(2006)
Mol Cell Biol
, vol.26
, Issue.4
, pp. 1373-1385
-
-
Shoham, T.1
Rajapaksa, R.2
Kuo, C.C.3
Haimovich, J.4
Levy, S.5
-
33
-
-
84875538701
-
The Actin and Tetraspanin Networks Organize Receptor Nanoclusters to Regulate B Cell Receptor-Mediated Signaling
-
Mattila, P. K., C. Feest, D. Depoil et al. “The Actin and Tetraspanin Networks Organize Receptor Nanoclusters to Regulate B Cell Receptor-Mediated Signaling.” Immunity 38, no. 3 (2013): 461–74.
-
(2013)
Immunity
, vol.38
, Issue.3
, pp. 461-474
-
-
Mattila, P.K.1
Feest, C.2
Depoil, D.3
-
34
-
-
8144230161
-
Tetraspanin Microdomains in Immune Cell Signalling and Malignant Disease
-
Wright, M. D., G. W. Moseley, and A. B. van Spriel. “Tetraspanin Microdomains in Immune Cell Signalling and Malignant Disease.” Tissue Antigens 64, no. 5 (2004): 533–42.
-
(2004)
Tissue Antigens
, vol.64
, Issue.5
, pp. 533-542
-
-
Wright, M.D.1
Moseley, G.W.2
Van Spriel, A.B.3
-
35
-
-
57749169272
-
Tetraspanins: Push and Pull in Suppressing and Promoting Metastasis
-
Zoller, M. “Tetraspanins: Push and Pull in Suppressing and Promoting Metastasis.” Nat Rev Cancer 9, no. 1 (2009): 40–55.
-
(2009)
Nat Rev Cancer
, vol.9
, Issue.1
, pp. 40-55
-
-
Zoller, M.1
-
36
-
-
84866496660
-
Targeting Tetraspanins in Cancer
-
Sala-Valdes, M., N. Ailane, C. Greco, E. Rubinstein, and C. Boucheix. “Targeting Tetraspanins in Cancer.” Expert Opin Ther Targets 16, no. 10 (2012): 985–97.
-
(2012)
Expert Opin Ther Targets
, vol.16
, Issue.10
, pp. 985-997
-
-
Sala-Valdes, M.1
Ailane, N.2
Greco, C.3
Rubinstein, E.4
Boucheix, C.5
-
37
-
-
79953309755
-
Tetraspanins and Tumor Progression
-
Richardson, M. M., L. K. Jennings, and X. A. Zhang. “Tetraspanins and Tumor Progression.” Clin Exp Metastasis 28, no. 3 (2011): 261–70.
-
(2011)
Clin Exp Metastasis
, vol.28
, Issue.3
, pp. 261-270
-
-
Richardson, M.M.1
Jennings, L.K.2
Zhang, X.A.3
-
38
-
-
33746268330
-
KAI1/CD82, a Tumor Metastasis Suppressor
-
Liu, W. M., and X. A. Zhang. “KAI1/CD82, a Tumor Metastasis Suppressor.” Cancer Lett 240, no. 2 (2006): 183–94.
-
(2006)
Cancer Lett
, vol.240
, Issue.2
, pp. 183-194
-
-
Liu, W.M.1
Zhang, X.A.2
-
39
-
-
57649171547
-
Controlling Cell Surface Dynamics and Signaling: How CD82/KAI1 Suppresses Metastasis
-
Miranti, C. K. “Controlling Cell Surface Dynamics and Signaling: How CD82/KAI1 Suppresses Metastasis.” Cell Signal 21, no. 2 (2009): 196–211.
-
(2009)
Cell Signal
, vol.21
, Issue.2
, pp. 196-211
-
-
Miranti, C.K.1
-
40
-
-
5644243063
-
The Palmitoylation of Metastasis Suppressor KAI1/CD82 Is Important for Its Motility- and Invasiveness-Inhibitory Activity
-
Zhou, B., L. Liu, M. Reddivari, and X. A. Zhang. “The Palmitoylation of Metastasis Suppressor KAI1/CD82 Is Important for Its Motility- and Invasiveness-Inhibitory Activity.” Cancer Res 64, no. 20 (2004): 7455–63.
-
(2004)
Cancer Res
, vol.64
, Issue.20
, pp. 7455-7463
-
-
Zhou, B.1
Liu, L.2
Reddivari, M.3
Zhang, X.A.4
-
41
-
-
39849083927
-
The Inhibition of Tumor Cell Intravasation and Subsequent Metastasis via Regulation of In Vivo Tumor Cell Motility by the Tetraspanin CD151
-
Zijlstra, A., J. Lewis, B. Degryse, H. Stuhlmann, and J. P. Quigley. “The Inhibition of Tumor Cell Intravasation and Subsequent Metastasis via Regulation of In Vivo Tumor Cell Motility by the Tetraspanin CD151.” Cancer Cell 13, no. 3 (2008): 221–34.
-
(2008)
Cancer Cell
, vol.13
, Issue.3
, pp. 221-234
-
-
Zijlstra, A.1
Lewis, J.2
Degryse, B.3
Stuhlmann, H.4
Quigley, J.P.5
-
42
-
-
77953064012
-
Laminin-Binding Integrins and Their Tetraspanin Partners as Potential Antimetastatic Targets
-
Stipp, C. S. “Laminin-Binding Integrins and Their Tetraspanin Partners as Potential Antimetastatic Targets.” Expert Rev Mol Med 12 (2010): e3.
-
(2010)
Expert Rev Mol Med
, vol.12
-
-
Stipp, C.S.1
-
43
-
-
67649595322
-
CD151 Regulates Tumorigenesis by Modulating the Communication between Tumor Cells and Endothelium
-
Sadej, R., H. Romanska, G. Baldwin et al. “CD151 Regulates Tumorigenesis by Modulating the Communication between Tumor Cells and Endothelium.” Mol Cancer Res 7, no. 6 (2009): 787–98.
-
(2009)
Mol Cancer Res
, vol.7
, Issue.6
, pp. 787-798
-
-
Sadej, R.1
Romanska, H.2
Baldwin, G.3
-
44
-
-
58949083480
-
CD151 Regulates HGF-Stimulated Morphogenesis of Human Breast Cancer Cells
-
Klosek, S. K., K. Nakashiro, S. Hara et al. “CD151 Regulates HGF-Stimulated Morphogenesis of Human Breast Cancer Cells.” Biochem Biophys Res Commun 379, no. 4 (2009): 1097–100.
-
(2009)
Biochem Biophys Res Commun
, vol.379
, Issue.4
, pp. 1097-1100
-
-
Klosek, S.K.1
Nakashiro, K.2
Hara, S.3
-
45
-
-
77955022593
-
Tetraspanin CD151 Regulates Transforming Growth Factor Beta Signaling: Implication in Tumor Metastasis
-
Sadej, R., H. Romanska, D. Kavanagh et al. “Tetraspanin CD151 Regulates Transforming Growth Factor Beta Signaling: Implication in Tumor Metastasis.” Cancer Res 70, no. 14 (2010): 6059–70.
-
(2010)
Cancer Res
, vol.70
, Issue.14
, pp. 6059-6070
-
-
Sadej, R.1
Romanska, H.2
Kavanagh, D.3
-
46
-
-
79953174990
-
Membrane Proteases and Tetraspanins
-
Yanez-Mo, M., F. Sanchez-Madrid, and C. Cabanas. “Membrane Proteases and Tetraspanins.” Biochem Soc Trans 39, no. 2 (2011): 541–6.
-
(2011)
Biochem Soc Trans
, vol.39
, Issue.2
, pp. 541-546
-
-
Yanez-Mo, M.1
Sanchez-Madrid, F.2
Cabanas, C.3
-
47
-
-
54049111439
-
MT1-MMP Collagenolytic Activity Is Regulated through Association with Tetraspanin CD151 in Primary Endothelial Cells
-
Yanez-Mo, M., O. Barreiro, P. Gonzalo et al. “MT1-MMP Collagenolytic Activity Is Regulated through Association with Tetraspanin CD151 in Primary Endothelial Cells.” Blood 112, no. 8 (2008): 3217–26.
-
(2008)
Blood
, vol.112
, Issue.8
, pp. 3217-3226
-
-
Yanez-Mo, M.1
Barreiro, O.2
Gonzalo, P.3
-
48
-
-
65249142254
-
Tetraspanin Proteins Regulate Membrane Type-1 Matrix Metalloproteinase-Dependent Pericellular Proteolysis
-
Lafleur, M. A., D. Xu, and M. E. Hemler. “Tetraspanin Proteins Regulate Membrane Type-1 Matrix Metalloproteinase-Dependent Pericellular Proteolysis.” Mol Biol Cell 20, no. 7 (2009): 2030–40.
-
(2009)
Mol Biol Cell
, vol.20
, Issue.7
, pp. 2030-2040
-
-
Lafleur, M.A.1
Xu, D.2
Hemler, M.E.3
-
49
-
-
84869211737
-
The TspanC8 Subgroup of Tetraspanins Interacts with a Disintegrin and Metalloprotease 10 (ADAM10) and Regulates Its Maturation and Cell Surface Expression
-
Haining, E. J., J. Yang, R. L. Bailey et al. “The TspanC8 Subgroup of Tetraspanins Interacts with a Disintegrin and Metalloprotease 10 (ADAM10) and Regulates Its Maturation and Cell Surface Expression.” J Biol Chem 287, no. 47 (2012): 39753–65.
-
(2012)
J Biol Chem
, vol.287
, Issue.47
, pp. 39753-39765
-
-
Haining, E.J.1
Yang, J.2
Bailey, R.L.3
-
50
-
-
84869121252
-
TspanC8 Tetraspanins Regulate ADAM10/Kuzbanian Trafficking and Promote Notch Activation in Flies and Mammals
-
Dornier, E., F. Coumailleau, J. F. Ottavi et al. “TspanC8 Tetraspanins Regulate ADAM10/Kuzbanian Trafficking and Promote Notch Activation in Flies and Mammals.” J Cell Biol 199, no. 3 (2012): 481–96.
-
(2012)
J Cell Biol
, vol.199
, Issue.3
, pp. 481-496
-
-
Dornier, E.1
Coumailleau, F.2
Ottavi, J.F.3
-
51
-
-
0037051906
-
Differential Stability of Tetraspanin/Tetraspanin Interactions: Role of Palmitoylation
-
Charrin, S., S. Manie, M. Oualid et al. “Differential Stability of Tetraspanin/Tetraspanin Interactions: Role of Palmitoylation.” FEBS Lett 516, no. 1–3 (2002): 139–44.
-
(2002)
FEBS Lett
, vol.516
, Issue.1-3
, pp. 139-144
-
-
Charrin, S.1
Manie, S.2
Oualid, M.3
-
52
-
-
79953203957
-
Structure-Function Analysis of Tetraspanin CD151 Reveals Distinct Requirements for Tumor Cell Behaviors Mediated by Alpha3beta1 Versus Alpha6beta4 Integrin
-
Zevian, S., N. E. Winterwood, and C. S. Stipp. “Structure-Function Analysis of Tetraspanin CD151 Reveals Distinct Requirements for Tumor Cell Behaviors Mediated by Alpha3beta1 Versus Alpha6beta4 Integrin.” J Biol Chem 286, no. 9 (2011): 7496–506.
-
(2011)
J Biol Chem
, vol.286
, Issue.9
, pp. 7496-7506
-
-
Zevian, S.1
Winterwood, N.E.2
Stipp, C.S.3
-
53
-
-
79961142381
-
The C-Terminal Tail of Tetraspanin Protein CD9 Contributes to Its Function and Molecular Organization
-
Wang, H. X., T. V. Kolesnikova, C. Denison, S. P. Gygi, and M. E. Hemler. “The C-Terminal Tail of Tetraspanin Protein CD9 Contributes to Its Function and Molecular Organization.” J Cell Sci 124, Pt 16 (2011): 2702–10.
-
(2011)
J Cell Sci
, vol.124
, pp. 2702-2710
-
-
Wang, H.X.1
Kolesnikova, T.V.2
Denison, C.3
Gygi, S.P.4
Hemler, M.E.5
-
54
-
-
0037079628
-
Rho GTPases Link Cytoskeletal Rearrangements and Activation Processes Induced via the Tetraspanin CD82 in T Lymphocytes
-
Delaguillaumie, A., C. Lagaudriere-Gesbert, M. R. Popoff, and H. Conjeaud. “Rho GTPases Link Cytoskeletal Rearrangements and Activation Processes Induced via the Tetraspanin CD82 in T Lymphocytes.” J Cell Sci 115, Pt 2 (2002): 433–43.
-
(2002)
J Cell Sci
, vol.115
, pp. 433-443
-
-
Delaguillaumie, A.1
Lagaudriere-Gesbert, C.2
Popoff, M.R.3
Conjeaud, H.4
-
55
-
-
33646148495
-
Tetraspanin KAI1/CD82 Suppresses Invasion by Inhibiting Integrin-Dependent Crosstalk with c-Met Receptor and Src Kinases
-
Sridhar, S. C., and C. K. Miranti. “Tetraspanin KAI1/CD82 Suppresses Invasion by Inhibiting Integrin-Dependent Crosstalk with c-Met Receptor and Src Kinases.” Oncogene 25, no. 16 (2006): 2367–78.
-
(2006)
Oncogene
, vol.25
, Issue.16
, pp. 2367-2378
-
-
Sridhar, S.C.1
Miranti, C.K.2
-
56
-
-
41149147556
-
Ganglioside GM2/GM3 Complex Affixed on Silica Nanospheres Strongly Inhibits Cell Motility through CD82/cMet-Mediated Pathway
-
Todeschini, A. R., J. N. Dos Santos, K. Handa, and S. I. Hakomori. “Ganglioside GM2/GM3 Complex Affixed on Silica Nanospheres Strongly Inhibits Cell Motility through CD82/cMet-Mediated Pathway.” Proc Natl Acad Sci U S A 105, no. 6 (2008): 1925–30.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.6
, pp. 1925-1930
-
-
Todeschini, A.R.1
Dos Santos, J.N.2
Handa, K.3
Hakomori, S.I.4
-
57
-
-
4344665591
-
Prostate Cancer and the Met Hepatocyte Growth Factor Receptor
-
Knudsen, B. S., and M. Edlund. “Prostate Cancer and the Met Hepatocyte Growth Factor Receptor.” Adv Cancer Res 91 (2004): 31–67.
-
(2004)
Adv Cancer Res
, vol.91
, pp. 31-67
-
-
Knudsen, B.S.1
Edlund, M.2
-
58
-
-
24644472051
-
CD151 Forms a Functional Complex with c-Met in Human Salivary Gland Cancer Cells
-
Klosek, S. K., K. Nakashiro, S. Hara et al. “CD151 Forms a Functional Complex with c-Met in Human Salivary Gland Cancer Cells.” Biochem Biophys Res Commun 336, no. 2 (2005): 408–16.
-
(2005)
Biochem Biophys Res Commun
, vol.336
, Issue.2
, pp. 408-416
-
-
Klosek, S.K.1
Nakashiro, K.2
Hara, S.3
-
59
-
-
78649806671
-
The Tetraspanin CD151 Is Required for Met-Dependent Signaling and Tumor Cell Growth
-
Franco, M., C. Muratori, S. Corso et al. “The Tetraspanin CD151 Is Required for Met-Dependent Signaling and Tumor Cell Growth.” J Biol Chem 285, no. 50 (2010): 38756–64.
-
(2010)
J Biol Chem
, vol.285
, Issue.50
, pp. 38756-38764
-
-
Franco, M.1
Muratori, C.2
Corso, S.3
-
60
-
-
3142512610
-
Targeting the Tumor and Its Microenvironment by a Dual-Function Decoy Met Receptor
-
Michieli, P., M. Mazzone, C. Basilico et al. “Targeting the Tumor and Its Microenvironment by a Dual-Function Decoy Met Receptor.” Cancer Cell 6, no. 1 (2004): 61–73.
-
(2004)
Cancer Cell
, vol.6
, Issue.1
, pp. 61-73
-
-
Michieli, P.1
Mazzone, M.2
Basilico, C.3
-
61
-
-
79955641985
-
Expression and Prognostic Significance of CD151, c-Met, and Integrin Alpha3/Alpha6 in Pancreatic Ductal Adenocarcinoma
-
Zhu, G. H., C. Huang, Z. J. Qiu et al. “Expression and Prognostic Significance of CD151, c-Met, and Integrin Alpha3/Alpha6 in Pancreatic Ductal Adenocarcinoma.” Dig Dis Sci 56, no. 4 (2011): 1090–8.
-
(2011)
Dig Dis Sci
, vol.56
, Issue.4
, pp. 1090-1098
-
-
Zhu, G.H.1
Huang, C.2
Qiu, Z.J.3
-
62
-
-
0034710619
-
Attenuation of EGF Receptor Signaling by a Metastasis Suppressor, the Tetraspanin CD82/KAI-1
-
Odintsova, E., T. Sugiura, and F. Berditchevski. “Attenuation of EGF Receptor Signaling by a Metastasis Suppressor, the Tetraspanin CD82/KAI-1.” Curr Biol 10, no. 16 (2000): 1009–12.
-
(2000)
Curr Biol
, vol.10
, Issue.16
, pp. 1009-1012
-
-
Odintsova, E.1
Sugiura, T.2
Berditchevski, F.3
-
63
-
-
0344897638
-
Tetraspanin CD82 Regulates Compartmentalisation and Ligand-Induced Dimerization of EGFR
-
Odintsova, E., J. Voortman, E. Gilbert, and F. Berditchevski. “Tetraspanin CD82 Regulates Compartmentalisation and Ligand-Induced Dimerization of EGFR.” J Cell Sci 116, Pt 22 (2003): 4557–66.
-
(2003)
J Cell Sci
, vol.116
, pp. 4557-4566
-
-
Odintsova, E.1
Voortman, J.2
Gilbert, E.3
Berditchevski, F.4
-
64
-
-
84883733829
-
Metastasis Suppressor Tetraspanin CD82/KAI1 Regulates Ubiquitylation of Epidermal Growth Factor Receptor
-
Odintsova, E., G. van Niel, H. Conjeaud et al. “Metastasis Suppressor Tetraspanin CD82/KAI1 Regulates Ubiquitylation of Epidermal Growth Factor Receptor.” J Biol Chem 288, no. 36 (2013): 26323–34.
-
(2013)
J Biol Chem
, vol.288
, Issue.36
, pp. 26323-26334
-
-
Odintsova, E.1
Van Niel, G.2
Conjeaud, H.3
-
65
-
-
0035816663
-
Transmembrane-4 Superfamily Proteins Associate with Activated Protein Kinase C (PKC) and Link PKC to Specific Beta(1) Integrins
-
Zhang, X. A., A. L. Bontrager, and M. E. Hemler. “Transmembrane-4 Superfamily Proteins Associate with Activated Protein Kinase C (PKC) and Link PKC to Specific Beta(1) Integrins.” J Biol Chem 276, no. 27 (2001): 25005–13.
-
(2001)
J Biol Chem
, vol.276
, Issue.27
, pp. 25005-25013
-
-
Zhang, X.A.1
Bontrager, A.L.2
Hemler, M.E.3
-
66
-
-
84876150666
-
Tetraspanin CD151 Plays a Key Role in Skin Squamous Cell Carcinoma
-
Li, Q., X. H. Yang, F. Xu et al. “Tetraspanin CD151 Plays a Key Role in Skin Squamous Cell Carcinoma.” Oncogene 32, no. 14 (2013): 1772–83.
-
(2013)
Oncogene
, vol.32
, Issue.14
, pp. 1772-1783
-
-
Li, Q.1
Yang, X.H.2
Xu, F.3
-
67
-
-
35448931927
-
Suppression of Epidermal Growth Factor Receptor Signaling by Protein Kinase C-Alpha Activation Requires CD82, Caveolin-1, and Ganglioside
-
Wang, X. Q., Q. Yan, P. Sun et al. “Suppression of Epidermal Growth Factor Receptor Signaling by Protein Kinase C-Alpha Activation Requires CD82, Caveolin-1, and Ganglioside.” Cancer Res 67, no. 20 (2007): 9986–95.
-
(2007)
Cancer Res
, vol.67
, Issue.20
, pp. 9986-9995
-
-
Wang, X.Q.1
Yan, Q.2
Sun, P.3
-
68
-
-
0032566290
-
Protein Kinase C Acylation by Palmitoyl Coenzyme a Facilitates Its Translocation to Membranes
-
Ford, D. A., C. C. Horner, and R. W. Gross. “Protein Kinase C Acylation by Palmitoyl Coenzyme a Facilitates Its Translocation to Membranes.” Biochemistry 37, no. 34 (1998): 11953–61.
-
(1998)
Biochemistry
, vol.37
, Issue.34
, pp. 11953-11961
-
-
Ford, D.A.1
Horner, C.C.2
Gross, R.W.3
-
69
-
-
51049123096
-
DHHC2 Affects Palmitoylation, Stability, and Functions of Tetraspanins CD9 and CD151
-
Sharma, C., X. H. Yang, and M. E. Hemler. “DHHC2 Affects Palmitoylation, Stability, and Functions of Tetraspanins CD9 and CD151.” Mol Biol Cell 19, no. 8 (2008): 3415–25.
-
(2008)
Mol Biol Cell
, vol.19
, Issue.8
, pp. 3415-3425
-
-
Sharma, C.1
Yang, X.H.2
Hemler, M.E.3
-
70
-
-
0032509402
-
C-Src Kinase Activity Is Required for Hepatocyte Growth Factor-Induced Motility and Anchorage-Independent Growth of Mammary Carcinoma Cells
-
Rahimi, N., W. Hung, E. Tremblay, R. Saulnier, and B. Elliott. “C-Src Kinase Activity Is Required for Hepatocyte Growth Factor-Induced Motility and Anchorage-Independent Growth of Mammary Carcinoma Cells.” J Biol Chem 273, no. 50 (1998): 33714–21.
-
(1998)
J Biol Chem
, vol.273
, Issue.50
, pp. 33714-33721
-
-
Rahimi, N.1
Hung, W.2
Tremblay, E.3
Saulnier, R.4
Elliott, B.5
-
71
-
-
0038711439
-
Requirement of the p130CAS-Crk Coupling for Metastasis Suppressor KAI1/CD82-Mediated Inhibition of Cell Migration
-
Zhang, X. A., B. He, B. Zhou, and L. Liu. “Requirement of the p130CAS-Crk Coupling for Metastasis Suppressor KAI1/CD82-Mediated Inhibition of Cell Migration.” J Biol Chem 278, no. 29 (2003): 27319–28.
-
(2003)
J Biol Chem
, vol.278
, Issue.29
, pp. 27319-27328
-
-
Zhang, X.A.1
He, B.2
Zhou, B.3
Liu, L.4
-
72
-
-
71949115354
-
Transforming Potential of Src Family Kinases Is Limited by the Cholesterol-Enriched Membrane Microdomain
-
Oneyama, C., T. Iino, K. Saito et al. “Transforming Potential of Src Family Kinases Is Limited by the Cholesterol-Enriched Membrane Microdomain.” Mol Cell Biol 29, no. 24 (2009): 6462–72.
-
(2009)
Mol Cell Biol
, vol.29
, Issue.24
, pp. 6462-6472
-
-
Oneyama, C.1
Iino, T.2
Saito, K.3
-
73
-
-
70349677179
-
CD82 Endocytosis and Cholesterol-Dependent Reorganization of Tetraspanin Webs and Lipid Rafts
-
Xu, C., Y. H. Zhang, M. Thangavel et al. “CD82 Endocytosis and Cholesterol-Dependent Reorganization of Tetraspanin Webs and Lipid Rafts.” FASEB J 23, no. 10 (2009): 3273–88.
-
(2009)
FASEB J
, vol.23
, Issue.10
, pp. 3273-3288
-
-
Xu, C.1
Zhang, Y.H.2
Thangavel, M.3
-
74
-
-
84862826253
-
KAI1 Suppresses HIF-1alpha and VEGF Expression by Blocking CDCP1-Enhanced Src Activation in Prostate Cancer
-
Park, J. J., Y. B. Jin, Y. J. Lee et al. “KAI1 Suppresses HIF-1alpha and VEGF Expression by Blocking CDCP1-Enhanced Src Activation in Prostate Cancer.” BMC Cancer 12 (2012): 81.
-
(2012)
BMC Cancer
, vol.12
, pp. 81
-
-
Park, J.J.1
Jin, Y.B.2
Lee, Y.J.3
-
75
-
-
40849119661
-
The Role of Membrane Microdomains in Transmembrane Signaling through the Epithelial Glycoprotein Gp140/CDCP1
-
Alvares, S. M., C. A. Dunn, T. A. Brown, E. E. Wayner, and W. G. Carter. “The Role of Membrane Microdomains in Transmembrane Signaling through the Epithelial Glycoprotein Gp140/CDCP1.” Biochim Biophys Acta 1780, no. 3 (2008): 486–96.
-
(2008)
Biochim Biophys Acta
, vol.1780
, Issue.3
, pp. 486-496
-
-
Alvares, S.M.1
Dunn, C.A.2
Brown, T.A.3
Wayner, E.E.4
Carter, W.G.5
-
76
-
-
84865764384
-
Protein Kinase Ctheta C2 Domain Is a Phosphotyrosine Binding Module That Plays a Key Role in Its Activation
-
Stahelin, R. V., K. F. Kong, S. Raha et al. “Protein Kinase Ctheta C2 Domain Is a Phosphotyrosine Binding Module That Plays a Key Role in Its Activation.” J Biol Chem 287, no. 36 (2012): 30518–28.
-
(2012)
J Biol Chem
, vol.287
, Issue.36
, pp. 30518-30528
-
-
Stahelin, R.V.1
Kong, K.F.2
Raha, S.3
-
77
-
-
45049085596
-
A Novel Function of CD82/KAI-1 on E-Cadherin-Mediated Homophilic Cellular Adhesion of Cancer Cells
-
Abe, M., T. Sugiura, M. Takahashi et al. “A Novel Function of CD82/KAI-1 on E-Cadherin-Mediated Homophilic Cellular Adhesion of Cancer Cells.” Cancer Lett 266, no. 2 (2008): 163–70.
-
(2008)
Cancer Lett
, vol.266
, Issue.2
, pp. 163-170
-
-
Abe, M.1
Sugiura, T.2
Takahashi, M.3
-
78
-
-
69449100115
-
Tetraspanin CD151 Regulates Rhoa Activation and the Dynamic Stability of Carcinoma Cell-Cell Contacts
-
Johnson, J. L., N. Winterwood, K. A. DeMali, and C. S. Stipp. “Tetraspanin CD151 Regulates Rhoa Activation and the Dynamic Stability of Carcinoma Cell-Cell Contacts.” J Cell Sci 122, Pt 13 (2009): 2263–73.
-
(2009)
J Cell Sci
, vol.122
, pp. 2263-2273
-
-
Johnson, J.L.1
Winterwood, N.2
Demali, K.A.3
Stipp, C.S.4
-
79
-
-
36749037222
-
A Novel Cysteine Cross-Linking Method Reveals a Direct Association between Claudin-1 and Tetraspanin CD9
-
Kovalenko, O. V., X. H. Yang, and M. E. Hemler. “A Novel Cysteine Cross-Linking Method Reveals a Direct Association between Claudin-1 and Tetraspanin CD9.” Mol Cell Proteomics 6, no. 11 (2007): 1855–67.
-
(2007)
Mol Cell Proteomics
, vol.6
, Issue.11
, pp. 1855-1867
-
-
Kovalenko, O.V.1
Yang, X.H.2
Hemler, M.E.3
-
80
-
-
43249112076
-
CD81 and Claudin 1 Coreceptor Association: Role in Hepatitis C Virus Entry
-
Harris, H. J., M. J. Farquhar, C. J. Mee et al. “CD81 and Claudin 1 Coreceptor Association: Role in Hepatitis C Virus Entry.” J Virol 82, no. 10 (2008): 5007–20.
-
(2008)
J Virol
, vol.82
, Issue.10
, pp. 5007-5020
-
-
Harris, H.J.1
Farquhar, M.J.2
Mee, C.J.3
-
81
-
-
0035897413
-
Osp/Claudin-11 Forms a Complex with a Novel Member of the Tetraspanin Super Family and Beta1 Integrin and Regulates Proliferation and Migration of Oligodendrocytes
-
Tiwari-Woodruff, S. K., A. G. Buznikov, T. Q. Vu et al. “Osp/Claudin-11 Forms a Complex with a Novel Member of the Tetraspanin Super Family and Beta1 Integrin and Regulates Proliferation and Migration of Oligodendrocytes.” J Cell Biol 153, no. 2 (2001): 295–305.
-
(2001)
J Cell Biol
, vol.153
, Issue.2
, pp. 295-305
-
-
Tiwari-Woodruff, S.K.1
Buznikov, A.G.2
Vu, T.Q.3
-
82
-
-
62549135313
-
Claudin-7 Regulates EpCAM-Mediated Functions in Tumor Progression
-
Nubel, T., J. Preobraschenski, H. Tuncay et al. “Claudin-7 Regulates EpCAM-Mediated Functions in Tumor Progression.” Mol Cancer Res 7, no. 3 (2009): 285–99.
-
(2009)
Mol Cancer Res
, vol.7
, Issue.3
, pp. 285-299
-
-
Nubel, T.1
Preobraschenski, J.2
Tuncay, H.3
-
83
-
-
84866345905
-
Tetraspanin CD151 Stimulates Adhesion-Dependent Activation of Ras, Rac, and Cdc42 by Facilitating Molecular Association between Beta1 Integrins and Small GTPases
-
Hong, I. K., D. I. Jeoung, K. S. Ha, Y. M. Kim, and H. Lee. “Tetraspanin CD151 Stimulates Adhesion-Dependent Activation of Ras, Rac, and Cdc42 by Facilitating Molecular Association between Beta1 Integrins and Small GTPases.” J Biol Chem 287, no. 38 (2012): 32027–39.
-
(2012)
J Biol Chem
, vol.287
, Issue.38
, pp. 32027-32039
-
-
Hong, I.K.1
Jeoung, D.I.2
Ha, K.S.3
Kim, Y.M.4
Lee, H.5
-
84
-
-
0037698415
-
The Tetraspanin CD151 Functions as a Negative Regulator in the Adhesion-Dependent Activation of Ras
-
Sawada, S., M. Yoshimoto, E. Odintsova, N. A. Hotchin, and F. Berditchevski. “The Tetraspanin CD151 Functions as a Negative Regulator in the Adhesion-Dependent Activation of Ras.” J Biol Chem 278, no. 29 (2003): 26323–6.
-
(2003)
J Biol Chem
, vol.278
, Issue.29
, pp. 26323-26326
-
-
Sawada, S.1
Yoshimoto, M.2
Odintsova, E.3
Hotchin, N.A.4
Berditchevski, F.5
-
85
-
-
84873391334
-
CD81 Regulates Cell Migration through Its Association with Rac GTPase
-
Tejera, E., V. Rocha-Perugini, S. Lopez-Martin et al. “CD81 Regulates Cell Migration through Its Association with Rac GTPase.” Mol Biol Cell 24, no. 3 (2013): 261–73.
-
(2013)
Mol Biol Cell
, vol.24
, Issue.3
, pp. 261-273
-
-
Tejera, E.1
Rocha-Perugini, V.2
Lopez-Martin, S.3
-
86
-
-
60649087369
-
KAI1/CD82 Decreases Rac1 Expression and Cell Proliferation through PI3K/Akt/mTOR Pathway in H1299 Lung Carcinoma Cells
-
Choi, U. J., B. K. Jee, Y. Lim, and K. H. Lee. “KAI1/CD82 Decreases Rac1 Expression and Cell Proliferation through PI3K/Akt/mTOR Pathway in H1299 Lung Carcinoma Cells.” Cell Biochem Funct 27, no. 1 (2009): 40–7.
-
(2009)
Cell Biochem Funct
, vol.27
, Issue.1
, pp. 40-47
-
-
Choi, U.J.1
Jee, B.K.2
Lim, Y.3
Lee, K.H.4
-
87
-
-
80051914848
-
CD81 Is Essential for the Formation of Membrane Protrusions and Regulates Rac1-Activation in Adhesion-Dependent Immune Cell Migration
-
Quast, T., F. Eppler, V. Semmling et al. “CD81 Is Essential for the Formation of Membrane Protrusions and Regulates Rac1-Activation in Adhesion-Dependent Immune Cell Migration.” Blood 118, no. 7 (2011): 1818–27.
-
(2011)
Blood
, vol.118
, Issue.7
, pp. 1818-1827
-
-
Quast, T.1
Eppler, F.2
Semmling, V.3
-
88
-
-
0038179866
-
EWI2/PGRL Associates with the Metastasis Suppressor KAI1/CD82 and Inhibits the Migration of Prostate Cancer Cells
-
Zhang, X. A., W. S. Lane, S. Charrin, E. Rubinstein, and L. Liu. “EWI2/PGRL Associates with the Metastasis Suppressor KAI1/CD82 and Inhibits the Migration of Prostate Cancer Cells.” Cancer Res 63, no. 10 (2003): 2665–74.
-
(2003)
Cancer Res
, vol.63
, Issue.10
, pp. 2665-2674
-
-
Zhang, X.A.1
Lane, W.S.2
Charrin, S.3
Rubinstein, E.4
Liu, L.5
-
89
-
-
70350353059
-
Engagement of CD81 Induces Ezrin Tyrosine Phosphorylation and Its Cellular Redistribution with Filamentous Actin
-
Coffey, G. P., R. Rajapaksa, R. Liu et al. “Engagement of CD81 Induces Ezrin Tyrosine Phosphorylation and Its Cellular Redistribution with Filamentous Actin.” J Cell Sci 122, Pt 17 (2009): 3137–44.
-
(2009)
J Cell Sci
, vol.122
, pp. 3137-3144
-
-
Coffey, G.P.1
Rajapaksa, R.2
Liu, R.3
-
90
-
-
84861415717
-
Tetraspanin CD37 Directly Mediates Transduction of Survival and Apoptotic Signals
-
Lapalombella, R., Y. Y. Yeh, L. Wang et al. “Tetraspanin CD37 Directly Mediates Transduction of Survival and Apoptotic Signals.” Cancer Cell 21, no. 5 (2012): 694–708.
-
(2012)
Cancer Cell
, vol.21
, Issue.5
, pp. 694-708
-
-
Lapalombella, R.1
Yeh, Y.Y.2
Wang, L.3
-
91
-
-
0036196266
-
Role of Adaptor Complex AP-3 in Targeting Wild-Type and Mutated CD63 to Lysosomes
-
Rous, B. A., B. J. Reaves, G. Ihrke et al. “Role of Adaptor Complex AP-3 in Targeting Wild-Type and Mutated CD63 to Lysosomes.” Mol Biol Cell 13, no. 3 (2002): 1071–82.
-
(2002)
Mol Biol Cell
, vol.13
, Issue.3
, pp. 1071-1082
-
-
Rous, B.A.1
Reaves, B.J.2
Ihrke, G.3
-
92
-
-
35748975965
-
Tetraspanin CD151 Promotes Cell Migration by Regulating Integrin Trafficking
-
Liu, L., B. He, W. M. Liu et al. “Tetraspanin CD151 Promotes Cell Migration by Regulating Integrin Trafficking.” J Biol Chem 282, no. 43 (2007): 31631–42.
-
(2007)
J Biol Chem
, vol.282
, Issue.43
, pp. 31631-31642
-
-
Liu, L.1
He, B.2
Liu, W.M.3
-
93
-
-
79952303272
-
The Tetraspanin CD82 Is Specifically Recruited to Fungal and Bacterial Phagosomes Prior to Acidification
-
Artavanis-Tsakonas, K., P. V. Kasperkovitz, E. Papa et al. “The Tetraspanin CD82 Is Specifically Recruited to Fungal and Bacterial Phagosomes Prior to Acidification.” Infect Immun 79, no. 3 (2011): 1098–106.
-
(2011)
Infect Immun
, vol.79
, Issue.3
, pp. 1098-1106
-
-
Artavanis-Tsakonas, K.1
Kasperkovitz, P.V.2
Papa, E.3
-
94
-
-
13544261393
-
Tetraspanin CD82 Attenuates Cellular Morphogenesis through Down-Regulating Integrin Alpha6-Mediated Cell Adhesion
-
He, B., L. Liu, G. A. Cook et al. “Tetraspanin CD82 Attenuates Cellular Morphogenesis through Down-Regulating Integrin Alpha6-Mediated Cell Adhesion.” J Biol Chem 280, no. 5 (2005): 3346–54.
-
(2005)
J Biol Chem
, vol.280
, Issue.5
, pp. 3346-3354
-
-
He, B.1
Liu, L.2
Cook, G.A.3
-
95
-
-
34247184670
-
Ganglioside GM2-Tetraspanin CD82 Complex Inhibits Met and Its Cross-Talk with Integrins, Providing a Basis for Control of Cell Motility through Glycosynapse
-
Todeschini, A. R., J. N. Dos Santos, K. Handa, and S. I. Hakomori. “Ganglioside GM2-Tetraspanin CD82 Complex Inhibits Met and Its Cross-Talk with Integrins, Providing a Basis for Control of Cell Motility through Glycosynapse.” J Biol Chem 282, no. 11 (2007): 8123–33.
-
(2007)
J Biol Chem
, vol.282
, Issue.11
, pp. 8123-8133
-
-
Todeschini, A.R.1
Dos Santos, J.N.2
Handa, K.3
Hakomori, S.I.4
-
96
-
-
0141923758
-
The Tetraspanin CD81 Regulates the Expression of CD19 during B Cell Development in a Postendoplasmic Reticulum Compartment
-
Shoham, T., R. Rajapaksa, C. Boucheix et al. “The Tetraspanin CD81 Regulates the Expression of CD19 during B Cell Development in a Postendoplasmic Reticulum Compartment.” J Immunol 171, no. 8 (2003): 4062–72.
-
(2003)
J Immunol
, vol.171
, Issue.8
, pp. 4062-4072
-
-
Shoham, T.1
Rajapaksa, R.2
Boucheix, C.3
-
97
-
-
0035872923
-
Quality Control of Transmembrane Domain Assembly in the Tetraspanin CD82
-
Cannon, K. S., and P. Cresswell. “Quality Control of Transmembrane Domain Assembly in the Tetraspanin CD82.” EMBO J 20, no. 10 (2001): 2443–53.
-
(2001)
EMBO J
, vol.20
, Issue.10
, pp. 2443-2453
-
-
Cannon, K.S.1
Cresswell, P.2
-
98
-
-
33846226473
-
Tetraspanins as Regulators of Protein Trafficking
-
Berditchevski, F., and E. Odintsova. “Tetraspanins as Regulators of Protein Trafficking.” Traffic 8, no. 2 (2007): 89–96.
-
(2007)
Traffic
, vol.8
, Issue.2
, pp. 89-96
-
-
Berditchevski, F.1
Odintsova, E.2
-
99
-
-
80052140149
-
The Role of Tetraspanin CD63 in Antigen Presentation via MHC Class II
-
Petersen, S. H., E. Odintsova, T. A. Haigh et al. “The Role of Tetraspanin CD63 in Antigen Presentation via MHC Class II.” Eur J Immunol 41, no. 9 (2011): 2556–61.
-
(2011)
Eur J Immunol
, vol.41
, Issue.9
, pp. 2556-2561
-
-
Petersen, S.H.1
Odintsova, E.2
Haigh, T.A.3
-
100
-
-
76749106591
-
Cell Surface Tetraspanin Tspan8 Contributes to Molecular Pathways of Exosome-Induced Endothelial Cell Activation
-
Nazarenko, I., S. Rana, A. Baumann et al. “Cell Surface Tetraspanin Tspan8 Contributes to Molecular Pathways of Exosome-Induced Endothelial Cell Activation.” Cancer Res 70, no. 4 (2010): 1668–78.
-
(2010)
Cancer Res
, vol.70
, Issue.4
, pp. 1668-1678
-
-
Nazarenko, I.1
Rana, S.2
Baumann, A.3
-
101
-
-
84871563123
-
Exosomes Mediate Stromal Mobilization of Autocrine Wnt-PCP Signaling in Breast Cancer Cell Migration
-
Luga, V., L. Zhang, A. M. Viloria-Petit et al. “Exosomes Mediate Stromal Mobilization of Autocrine Wnt-PCP Signaling in Breast Cancer Cell Migration.” Cell 151, no. 7 (2012): 1542–56.
-
(2012)
Cell
, vol.151
, Issue.7
, pp. 1542-1556
-
-
Luga, V.1
Zhang, L.2
Viloria-Petit, A.M.3
-
102
-
-
0033964768
-
Severely Reduced Female Fertility in CD9-Deficient Mice
-
Le Naour, F., E. Rubinstein, C. Jasmin, M. Prenant, and C. Boucheix. “Severely Reduced Female Fertility in CD9-Deficient Mice.” Science 287, no. 5451 (2000): 319–21.
-
(2000)
Science
, vol.287
, Issue.5451
, pp. 319-321
-
-
Le Naour, F.1
Rubinstein, E.2
Jasmin, C.3
Prenant, M.4
Boucheix, C.5
-
103
-
-
0033958932
-
Requirement of CD9 on the Egg Plasma Membrane for Fertilization
-
Miyado, K., G. Yamada, S. Yamada et al. “Requirement of CD9 on the Egg Plasma Membrane for Fertilization.” Science 287, no. 5451 (2000): 321–4.
-
(2000)
Science
, vol.287
, Issue.5451
, pp. 321-324
-
-
Miyado, K.1
Yamada, G.2
Yamada, S.3
-
104
-
-
0034091646
-
The Gamete Fusion Process Is Defective in Eggs of CD9-Deficient Mice
-
Kaji, K., S. Oda, T. Shikano et al. “The Gamete Fusion Process Is Defective in Eggs of CD9-Deficient Mice.” Nat Genet 24, no. 3 (2000): 279–82.
-
(2000)
Nat Genet
, vol.24
, Issue.3
, pp. 279-282
-
-
Kaji, K.1
Oda, S.2
Shikano, T.3
-
105
-
-
31544471680
-
Reduced Fertility of Female Mice Lacking CD81
-
Rubinstein, E., A. Ziyyat, M. Prenant et al. “Reduced Fertility of Female Mice Lacking CD81.” Dev Biol 290, no. 2 (2006): 351–8.
-
(2006)
Dev Biol
, vol.290
, Issue.2
, pp. 351-358
-
-
Rubinstein, E.1
Ziyyat, A.2
Prenant, M.3
-
106
-
-
33745890201
-
The Molecular Players of Sperm-Egg Fusion in Mammals
-
Rubinstein, E., A. Ziyyat, J. P. Wolf, F. Le Naour, and C. Boucheix. “The Molecular Players of Sperm-Egg Fusion in Mammals.” Semin Cell Dev Biol 17, no. 2 (2006): 254–63.
-
(2006)
Semin Cell Dev Biol
, vol.17
, Issue.2
, pp. 254-263
-
-
Rubinstein, E.1
Ziyyat, A.2
Wolf, J.P.3
Le Naour, F.4
Boucheix, C.5
-
107
-
-
0036333987
-
Residues SFQ (173–175) in the Large Extracellular Loop of CD9 Are Required for Gamete Fusion
-
Zhu, G. Z., B. J. Miller, C. Boucheix et al. “Residues SFQ (173–175) in the Large Extracellular Loop of CD9 Are Required for Gamete Fusion.” Development 129, no. 8 (2002): 1995–2002.
-
(2002)
Development
, vol.129
, Issue.8
, pp. 1995-2002
-
-
Zhu, G.Z.1
Miller, B.J.2
Boucheix, C.3
-
108
-
-
51349153446
-
The Fusing Ability of Sperm Is Bestowed by CD9-Containing Vesicles Released from Eggs in Mice
-
Miyado, K., K. Yoshida, K. Yamagata et al. “The Fusing Ability of Sperm Is Bestowed by CD9-Containing Vesicles Released from Eggs in Mice.” Proc Natl Acad Sci U S A 105, no. 35 (2008): 12921–6.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.35
, pp. 12921-12926
-
-
Miyado, K.1
Yoshida, K.2
Yamagata, K.3
-
109
-
-
84879247308
-
EWI-2wint Promotes CD81 Clustering That Abrogates Hepatitis C Virus Entry
-
Potel, J., P. Rassam, C. Montpellier et al. “EWI-2wint Promotes CD81 Clustering That Abrogates Hepatitis C Virus Entry.” Cell Microbiol 15, no. 7 (2013): 1234–52.
-
(2013)
Cell Microbiol
, vol.15
, Issue.7
, pp. 1234-1252
-
-
Potel, J.1
Rassam, P.2
Montpellier, C.3
-
110
-
-
79954568274
-
Interacting Regions of CD81 and Two of Its Partners, EWI-2 and EWI-2wint, and Their Effect on Hepatitis C Virus Infection
-
Montpellier, C., B. A. Tews, J. Poitrimole et al. “Interacting Regions of CD81 and Two of Its Partners, EWI-2 and EWI-2wint, and Their Effect on Hepatitis C Virus Infection.” J Biol Chem 286, no. 16 (2011): 13954–65.
-
(2011)
J Biol Chem
, vol.286
, Issue.16
, pp. 13954-13965
-
-
Montpellier, C.1
Tews, B.A.2
Poitrimole, J.3
-
111
-
-
84869861945
-
In Silico Directed Mutagenesis Identifies the CD81/Claudin-1 Hepatitis C Virus Receptor Interface
-
Davis, C., H. J. Harris, K. Hu et al. “In Silico Directed Mutagenesis Identifies the CD81/Claudin-1 Hepatitis C Virus Receptor Interface.” Cell Microbiol 14, no. 12 (2012): 1892–903.
-
(2012)
Cell Microbiol
, vol.14
, Issue.12
, pp. 1892-1903
-
-
Davis, C.1
Harris, H.J.2
Hu, K.3
-
112
-
-
79955692689
-
EGFR and EphA2 Are Host Factors for Hepatitis C Virus Entry and Possible Targets for Antiviral Therapy
-
Lupberger, J., M. B. Zeisel, F. Xiao et al. “EGFR and EphA2 Are Host Factors for Hepatitis C Virus Entry and Possible Targets for Antiviral Therapy.” Nat Med 17, no. 5 (2011): 589–95.
-
(2011)
Nat Med
, vol.17
, Issue.5
, pp. 589-595
-
-
Lupberger, J.1
Zeisel, M.B.2
Xiao, F.3
-
113
-
-
0033968407
-
A New Gene Involved in X-Linked Mental Retardation Identified by Analysis of an X;2 Balanced Translocation
-
Zemni, R., T. Bienvenu, M. C. Vinet et al. “A New Gene Involved in X-Linked Mental Retardation Identified by Analysis of an X;2 Balanced Translocation.” Nat Genet 24, no. 2 (2000): 167–70.
-
(2000)
Nat Genet
, vol.24
, Issue.2
, pp. 167-170
-
-
Zemni, R.1
Bienvenu, T.2
Vinet, M.C.3
-
114
-
-
84892369359
-
Tspan7: A New Player in Excitatory Synapse Maturation and Function
-
Bassani, S., and M. Passafaro. “Tspan7: A New Player in Excitatory Synapse Maturation and Function.” Bioarchitecture 2, no. 3 (2012): 95–7.
-
(2012)
Bioarchitecture
, vol.2
, Issue.3
, pp. 95-97
-
-
Bassani, S.1
Passafaro, M.2
-
115
-
-
76049123494
-
Next-Generation Sequencing of a 40 Mb Linkage Interval Reveals Tspan12 Mutations in Patients with Familial Exudative Vitreoretinopathy
-
Nikopoulos, K., C. Gilissen, A. Hoischen et al. “Next-Generation Sequencing of a 40 Mb Linkage Interval Reveals Tspan12 Mutations in Patients with Familial Exudative Vitreoretinopathy.” Am J Hum Genet 86, no. 2 (2010): 240–7.
-
(2010)
Am J Hum Genet
, vol.86
, Issue.2
, pp. 240-247
-
-
Nikopoulos, K.1
Gilissen, C.2
Hoischen, A.3
-
116
-
-
70349838225
-
Tspan12 Regulates Retinal Vascular Development by Promoting Norrin- but Not Wnt-Induced FZD4/Beta-Catenin Signaling
-
Junge, H. J., S. Yang, J. B. Burton et al. “Tspan12 Regulates Retinal Vascular Development by Promoting Norrin- but Not Wnt-Induced FZD4/Beta-Catenin Signaling.” Cell 139, no. 2 (2009): 299–311.
-
(2009)
Cell
, vol.139
, Issue.2
, pp. 299-311
-
-
Junge, H.J.1
Yang, S.2
Burton, J.B.3
-
117
-
-
84885462612
-
Membrane Curvature Generation by a C-Terminal Amphipathic Helix in Peripherin-2/rds, a Tetraspanin Required for Photoreceptor Sensory Cilium Morphogenesis
-
Khattree, N., L. M. Ritter, and A. F. Goldberg. “Membrane Curvature Generation by a C-Terminal Amphipathic Helix in Peripherin-2/rds, a Tetraspanin Required for Photoreceptor Sensory Cilium Morphogenesis.” J Cell Sci 126, no. 20 (2013): 659–70.
-
(2013)
J Cell Sci
, vol.126
, Issue.20
, pp. 659-670
-
-
Khattree, N.1
Ritter, L.M.2
Goldberg, A.F.3
-
118
-
-
79953144657
-
Cone Structure in Retinal Degeneration Associated with Mutations in the Peripherin/RDS Gene
-
Duncan, J. L., K. E. Talcott, K. Ratnam et al. “Cone Structure in Retinal Degeneration Associated with Mutations in the Peripherin/RDS Gene.” Invest Ophthalmol Vis Sci 52, no. 3 (2011): 1557–66.
-
(2011)
Invest Ophthalmol Vis Sci
, vol.52
, Issue.3
, pp. 1557-1566
-
-
Duncan, J.L.1
Talcott, K.E.2
Ratnam, K.3
-
119
-
-
0030474177
-
Defective Subunit Assembly Underlies a Digenic Form of Retinitis Pigmentosa Linked to Mutations in Peripherin/RDS and ROM-1
-
Goldberg, A. F., and R. S. Molday. “Defective Subunit Assembly Underlies a Digenic Form of Retinitis Pigmentosa Linked to Mutations in Peripherin/RDS and ROM-1.” Proc Natl Acad Sci U S A 93, no. 24 (1996): 13726–30.
-
(1996)
Proc Natl Acad Sci U S A
, vol.93
, Issue.24
, pp. 13726-13730
-
-
Goldberg, A.F.1
Molday, R.S.2
-
120
-
-
33751308138
-
ROM-1 Potentiates Photoreceptor Specific Membrane Fusion Processes
-
Boesze-Battaglia, K., F. P. Stefano, C. Fitzgerald, and S. Muller-Weeks. “ROM-1 Potentiates Photoreceptor Specific Membrane Fusion Processes.” Exp Eye Res 84, no. 1 (2007): 22–31.
-
(2007)
Exp Eye Res
, vol.84
, Issue.1
, pp. 22-31
-
-
Boesze-Battaglia, K.1
Stefano, F.P.2
Fitzgerald, C.3
Muller-Weeks, S.4
-
121
-
-
0034106721
-
ROM-1 Is Required for Rod Photoreceptor Viability and the Regulation of Disk Morphogenesis
-
Clarke, G., A. F. Goldberg, D. Vidgen et al. “ROM-1 Is Required for Rod Photoreceptor Viability and the Regulation of Disk Morphogenesis.” Nat Genet 25, no. 1 (2000): 67–73.
-
(2000)
Nat Genet
, vol.25
, Issue.1
, pp. 67-73
-
-
Clarke, G.1
Goldberg, A.F.2
Vidgen, D.3
-
122
-
-
4944239350
-
CD151, the First Member of the Tetraspanin (TM4) Superfamily Detected on Erythrocytes, Is Essential for the Correct Assembly of Human Basement Membranes in Kidney and Skin
-
Karamatic Crew, V., N. Burton, A. Kagan et al. “CD151, the First Member of the Tetraspanin (TM4) Superfamily Detected on Erythrocytes, Is Essential for the Correct Assembly of Human Basement Membranes in Kidney and Skin.” Blood 104, no. 8 (2004): 2217–23.
-
(2004)
Blood
, vol.104
, Issue.8
, pp. 2217-2223
-
-
Karamatic Crew, V.1
Burton, N.2
Kagan, A.3
-
123
-
-
0030890320
-
Recurrent Infectious Diseases in Human CD53 Deficiency
-
Mollinedo, F., G. Fontan, I. Barasoain, and P. A. Lazo. “Recurrent Infectious Diseases in Human CD53 Deficiency.” Clin Diagn Lab Immunol 4, no. 2 (1997): 229–31.
-
(1997)
Clin Diagn Lab Immunol
, vol.4
, Issue.2
, pp. 229-231
-
-
Mollinedo, F.1
Fontan, G.2
Barasoain, I.3
Lazo, P.A.4
-
124
-
-
77749242604
-
Fungal Pattern-Recognition Receptors and Tetraspanins: Partners on Antigen-Presenting Cells
-
Figdor, C. G., and A. B. van Spriel. “Fungal Pattern-Recognition Receptors and Tetraspanins: Partners on Antigen-Presenting Cells.” Trends Immunol 31, no. 3 (2010): 91–6.
-
(2010)
Trends Immunol
, vol.31
, Issue.3
, pp. 91-96
-
-
Figdor, C.G.1
Van Spriel, A.B.2
-
125
-
-
51049122842
-
Targeting of Tetraspanin Proteins—Potential Benefits and Strategies
-
Hemler, M. E. “Targeting of Tetraspanin Proteins—Potential Benefits and Strategies.” Nat Rev Drug Discov 7, no. 9 (2008): 747–58.
-
(2008)
Nat Rev Drug Discov
, vol.7
, Issue.9
, pp. 747-758
-
-
Hemler, M.E.1
-
126
-
-
70450216505
-
Strategies for Targeting Tetraspanin Proteins: Potential Therapeutic Applications in Microbial Infections
-
Hassuna, N., P. N. Monk, G. W. Moseley, and L. J. Partridge. “Strategies for Targeting Tetraspanin Proteins: Potential Therapeutic Applications in Microbial Infections.” BioDrugs 23, no. 6 (2009): 341–59.
-
(2009)
Biodrugs
, vol.23
, Issue.6
, pp. 341-359
-
-
Hassuna, N.1
Monk, P.N.2
Moseley, G.W.3
Partridge, L.J.4
|