-
2
-
-
77956050359
-
Physically based modeling: Rigid body simulation
-
D Baraff. Physically based modeling: Rigid body simulation. SIGGRAPH Course Notes, ACM SIGGRAPH, 2(1):2-1, 2001.
-
(2001)
SIGGRAPH Course Notes, ACM SIGGRAPH
, vol.2
, Issue.1
, pp. 2-11
-
-
Baraff, D.1
-
3
-
-
84887299182
-
Simulation as an engine of physical scene understanding
-
PW Battaglia, JB Hamrick, and JB Tenenbaum. Simulation as an engine of physical scene understanding. Proceedings of the National Academy of Sciences, 110(45):18327-18332, 2013.
-
(2013)
Proceedings of the National Academy of Sciences
, vol.110
, Issue.45
, pp. 18327-18332
-
-
Battaglia, P.W.1
Hamrick, J.B.2
Tenenbaum, J.B.3
-
5
-
-
85083954419
-
Learning visual predictive models of physics for playing billiards
-
K Fragkiadaki, P Agrawal, S Levine, and J Malik. Learning visual predictive models of physics for playing billiards. ICLR, 2016.
-
(2016)
ICLR
-
-
Fragkiadaki, K.1
Agrawal, P.2
Levine, S.3
Malik, J.4
-
6
-
-
0024621005
-
Analogical representations of naive physics
-
F. Gardin and B. Meltzer. Analogical representations of naive physics. Artificial Intelligence, 38(2):139-159, 1989.
-
(1989)
Artificial Intelligence
, vol.38
, Issue.2
, pp. 139-159
-
-
Gardin, F.1
Meltzer, B.2
-
7
-
-
84930631638
-
Probabilistic machine learning and artificial intelligence
-
Z. Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):452-459, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 452-459
-
-
Ghahramani, Z.1
-
9
-
-
0346759983
-
-
Université de Genève, Institut pour les études s é mantiques et cognitives
-
P.J Hayes. The naive physics manifesto. Université de Genève, Institut pour les études s é mantiques et cognitives, 1978.
-
(1978)
The Naive Physics Manifesto
-
-
Hayes, P.J.1
-
10
-
-
2542457496
-
Mechanical reasoning by mental simulation
-
M. Hegarty. Mechanical reasoning by mental simulation. TICS, 8(6):280-285, 2004.
-
(2004)
TICS
, vol.8
, Issue.6
, pp. 280-285
-
-
Hegarty, M.1
-
13
-
-
85083951076
-
Adam: A method for stochastic optimization
-
D. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
14
-
-
84995790721
-
Data-driven fluid simulations using regression forests
-
L Ladický, S Jeong, B Solenthaler, M Pollefeys, and M Gross. Data-driven fluid simulations using regression forests. ACM Transactions on Graphics (TOG), 34(6):199, 2015.
-
(2015)
ACM Transactions on Graphics (TOG)
, vol.34
, Issue.6
, pp. 199
-
-
Ladický, L.1
Jeong, S.2
Solenthaler, B.3
Pollefeys, M.4
Gross, M.5
-
16
-
-
84930630277
-
Deep learning
-
Y LeCun, Y Bengio, and G Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
21
-
-
85083952850
-
Neural programmer-interpreters
-
SE Reed and N de Freitas. Neural programmer-interpreters. ICLR, 2016.
-
(2016)
ICLR
-
-
Reed, S.E.1
De Freitas, N.2
-
22
-
-
58649113008
-
The graph neural network model
-
F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model. IEEE Trans. Neural Networks, 20(1):61-80, 2009.
-
(2009)
IEEE Trans. Neural Networks
, vol.20
, Issue.1
, pp. 61-80
-
-
Scarselli, F.1
Gori, M.2
Tsoi, A.C.3
Hagenbuchner, M.4
Monfardini, G.5
-
23
-
-
84910651844
-
Deep learning in neural networks: An overview
-
J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85-117, 2015.
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
24
-
-
85162476102
-
Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
-
R Socher, E Huang, J Pennin, C Manning, and A Ng. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In in NIPS, pages 801-809, 2011.
-
(2011)
NIPS
, pp. 801-809
-
-
Socher, R.1
Huang, E.2
Pennin, J.3
Manning, C.4
Ng, A.5
-
25
-
-
0026936165
-
Origins of knowledge
-
E Spelke, K Breinlinger, J Macomber, and K Jacobson. Origins of knowledge. Psychol. Rev., 99(4):605-632, 1992.
-
(1992)
Psychol. Rev.
, vol.99
, Issue.4
, pp. 605-632
-
-
Spelke, E.1
Breinlinger, K.2
Macomber, J.3
Jacobson, K.4
-
26
-
-
80053497982
-
Using matrices to model symbolic relationship
-
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
-
I Sutskever and GE Hinton. Using matrices to model symbolic relationship. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, in NIPS 21, pages 1593-1600. 2009.
-
(2009)
NIPS
, vol.21
, pp. 1593-1600
-
-
Sutskever, I.1
Hinton, G.E.2
-
27
-
-
79952512265
-
How to grow a mind: Statistics, structure, and abstraction
-
J.B. Tenenbaum, C. Kemp, T.L. Griffiths, and N.D. Goodman. How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022):1279, 2011.
-
(2011)
Science
, vol.331
, Issue.6022
, pp. 1279
-
-
Tenenbaum, J.B.1
Kemp, C.2
Griffiths, T.L.3
Goodman, N.D.4
-
29
-
-
84965122247
-
Galileo: Perceiving physical object properties by integrating a physics engine with deep learning
-
J Wu, I Yildirim, JJ Lim, B Freeman, and J Tenenbaum. Galileo: Perceiving physical object properties by integrating a physics engine with deep learning. In in NIPS, pages 127-135, 2015.
-
(2015)
NIPS
, pp. 127-135
-
-
Wu, J.1
Yildirim, I.2
Lim, J.J.3
Freeman, B.4
Tenenbaum, J.5
|