메뉴 건너뛰기




Volumn , Issue , 2016, Pages 4509-4517

Interaction networks for learning about objects, relations and physics

Author keywords

[No Author keywords available]

Indexed keywords

DEEP LEARNING; DEEP NEURAL NETWORKS;

EID: 85018882182     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1357)

References (29)
  • 1
    • 84993660571 scopus 로고    scopus 로고
    • Learning to compose neural networks for question answering
    • J Andreas, M Rohrbach, T Darrell, and D Klein. Learning to compose neural networks for question answering. NAACL, 2016.
    • (2016) NAACL
    • Andreas, J.1    Rohrbach, M.2    Darrell, T.3    Klein, D.4
  • 2
    • 77956050359 scopus 로고    scopus 로고
    • Physically based modeling: Rigid body simulation
    • D Baraff. Physically based modeling: Rigid body simulation. SIGGRAPH Course Notes, ACM SIGGRAPH, 2(1):2-1, 2001.
    • (2001) SIGGRAPH Course Notes, ACM SIGGRAPH , vol.2 , Issue.1 , pp. 2-11
    • Baraff, D.1
  • 5
    • 85083954419 scopus 로고    scopus 로고
    • Learning visual predictive models of physics for playing billiards
    • K Fragkiadaki, P Agrawal, S Levine, and J Malik. Learning visual predictive models of physics for playing billiards. ICLR, 2016.
    • (2016) ICLR
    • Fragkiadaki, K.1    Agrawal, P.2    Levine, S.3    Malik, J.4
  • 6
    • 0024621005 scopus 로고
    • Analogical representations of naive physics
    • F. Gardin and B. Meltzer. Analogical representations of naive physics. Artificial Intelligence, 38(2):139-159, 1989.
    • (1989) Artificial Intelligence , vol.38 , Issue.2 , pp. 139-159
    • Gardin, F.1    Meltzer, B.2
  • 7
    • 84930631638 scopus 로고    scopus 로고
    • Probabilistic machine learning and artificial intelligence
    • Z. Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):452-459, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 452-459
    • Ghahramani, Z.1
  • 9
    • 0346759983 scopus 로고
    • Université de Genève, Institut pour les études s é mantiques et cognitives
    • P.J Hayes. The naive physics manifesto. Université de Genève, Institut pour les études s é mantiques et cognitives, 1978.
    • (1978) The Naive Physics Manifesto
    • Hayes, P.J.1
  • 10
    • 2542457496 scopus 로고    scopus 로고
    • Mechanical reasoning by mental simulation
    • M. Hegarty. Mechanical reasoning by mental simulation. TICS, 8(6):280-285, 2004.
    • (2004) TICS , vol.8 , Issue.6 , pp. 280-285
    • Hegarty, M.1
  • 11
    • 84965096967 scopus 로고    scopus 로고
    • Spatial transformer networks
    • M Jaderberg, K Simonyan, and A Zisserman. Spatial transformer networks. In in NIPS, pages 2008-2016, 2015.
    • (2015) NIPS , pp. 2008-2016
    • Jaderberg, M.1    Simonyan, K.2    Zisserman, A.3
  • 13
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 16
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y LeCun, Y Bengio, and G Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 21
    • 85083952850 scopus 로고    scopus 로고
    • Neural programmer-interpreters
    • SE Reed and N de Freitas. Neural programmer-interpreters. ICLR, 2016.
    • (2016) ICLR
    • Reed, S.E.1    De Freitas, N.2
  • 23
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85-117, 2015.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 24
    • 85162476102 scopus 로고    scopus 로고
    • Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
    • R Socher, E Huang, J Pennin, C Manning, and A Ng. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In in NIPS, pages 801-809, 2011.
    • (2011) NIPS , pp. 801-809
    • Socher, R.1    Huang, E.2    Pennin, J.3    Manning, C.4    Ng, A.5
  • 26
    • 80053497982 scopus 로고    scopus 로고
    • Using matrices to model symbolic relationship
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
    • I Sutskever and GE Hinton. Using matrices to model symbolic relationship. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, in NIPS 21, pages 1593-1600. 2009.
    • (2009) NIPS , vol.21 , pp. 1593-1600
    • Sutskever, I.1    Hinton, G.E.2
  • 27
    • 79952512265 scopus 로고    scopus 로고
    • How to grow a mind: Statistics, structure, and abstraction
    • J.B. Tenenbaum, C. Kemp, T.L. Griffiths, and N.D. Goodman. How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022):1279, 2011.
    • (2011) Science , vol.331 , Issue.6022 , pp. 1279
    • Tenenbaum, J.B.1    Kemp, C.2    Griffiths, T.L.3    Goodman, N.D.4
  • 29
    • 84965122247 scopus 로고    scopus 로고
    • Galileo: Perceiving physical object properties by integrating a physics engine with deep learning
    • J Wu, I Yildirim, JJ Lim, B Freeman, and J Tenenbaum. Galileo: Perceiving physical object properties by integrating a physics engine with deep learning. In in NIPS, pages 127-135, 2015.
    • (2015) NIPS , pp. 127-135
    • Wu, J.1    Yildirim, I.2    Lim, J.J.3    Freeman, B.4    Tenenbaum, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.