메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 753-763

One-sided unsupervised domain mapping

Author keywords

[No Author keywords available]

Indexed keywords

INVERSE PROBLEMS; NUMERICAL METHODS;

EID: 85047010818     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (321)

References (28)
  • 2
    • 85041904170 scopus 로고    scopus 로고
    • Unsupervised pixel-level domain adaptation with generative adversarial networks
    • Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip Krishnan. Unsupervised pixel-level domain adaptation with generative adversarial networks. In CVPR, 2017.
    • (2017) CVPR
    • Bousmalis, K.1    Silberman, N.2    Dohan, D.3    Erhan, D.4    Krishnan, D.5
  • 3
    • 85018890883 scopus 로고    scopus 로고
    • Domain separation networks
    • D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors Curran Associates, Inc.
    • Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan. Domain separation networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 343-351. Curran Associates, Inc., 2016.
    • (2016) Advances in Neural Information Processing Systems 29 , pp. 343-351
    • Bousmalis, K.1    Trigeorgis, G.2    Silberman, N.3    Krishnan, D.4    Erhan, D.5
  • 4
    • 84877784179 scopus 로고    scopus 로고
    • 3d object detection and viewpoint estimation with a deformable 3d cuboid model
    • Sanja Fidler, Sven Dickinson, and Raquel Urtasun. 3d object detection and viewpoint estimation with a deformable 3d cuboid model. In NIPS, 2012.
    • (2012) NIPS
    • Fidler, S.1    Dickinson, S.2    Urtasun, R.3
  • 5
    • 84986325538 scopus 로고    scopus 로고
    • Image style transfer using convolutional neural networks
    • Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional neural networks. In CVPR, 2016.
    • (2016) CVPR
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 8
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 9
    • 85030759098 scopus 로고    scopus 로고
    • Image-to-image translation with conditional adversarial networks
    • Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. In CVPR, 2017.
    • (2017) CVPR
    • Isola, P.1    Zhu, J.-Y.2    Zhou, T.3    Efros, A.A.4
  • 10
    • 85019245160 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016.
    • (2016) ECCV
    • Johnson, J.1    Alahi, A.2    Li, F.-F.3
  • 13
    • 85019190707 scopus 로고    scopus 로고
    • Coupled generative adversarial networks
    • Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. In NIPS, pages 469-477. 2016.
    • (2016) NIPS , pp. 469-477
    • Liu, M.-Y.1    Tuzel, O.2
  • 17
    • 72349091918 scopus 로고    scopus 로고
    • A 3d face model for pose and illumination invariant face recognition
    • Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and Thomas Vetter. A 3d face model for pose and illumination invariant face recognition. In AVSS, 2009.
    • (2009) AVSS
    • Paysan, P.1    Knothe, R.2    Amberg, B.3    Romdhani, S.4    Vetter, T.5
  • 19
    • 85011287288 scopus 로고    scopus 로고
    • U-net: Convolutional networks for biomedical image segmentation
    • Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In MICCAI, 2015.
    • (2015) MICCAI
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 23
    • 84998882079 scopus 로고    scopus 로고
    • Texture networks: Feed-forward synthesis of textures and stylized images
    • D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Texture networks: Feed-forward synthesis of textures and stylized images. In ICML, 2016.
    • (2016) ICML
    • Ulyanov, D.1    Lebedev, V.2    Vedaldi, A.3    Lempitsky, V.4
  • 26
    • 84973904792 scopus 로고    scopus 로고
    • From facial parts responses to face detection: A deep learning approach
    • Shuo Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. From facial parts responses to face detection: A deep learning approach. In ICCV, pages 3676-3684, 2015.
    • (2015) ICCV , pp. 3676-3684
    • Yang, S.1    Luo, P.2    Loy, C.C.3    Tang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.