메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 2628-2637

REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models

Author keywords

[No Author keywords available]

Indexed keywords

MONTE CARLO METHODS;

EID: 85046959617     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (335)

References (24)
  • 3
    • 84976859194 scopus 로고
    • Likelihood ratio gradient estimation for stochastic systems
    • Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM, 33(10):75-84, 1990.
    • (1990) Communications of the ACM , vol.33 , Issue.10 , pp. 75-84
    • Glynn, P.W.1
  • 16
    • 84955506831 scopus 로고    scopus 로고
    • Black box variational inference
    • Rajesh Ranganath, Sean Gerrish, and David M Blei. Black box variational inference. In AISTATS, pp. 814-822, 2014.
    • (2014) AISTATS , pp. 814-822
    • Ranganath, R.1    Gerrish, S.2    Blei, D.M.3
  • 22
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229-256, 1992.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 229-256
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.