-
1
-
-
0003851729
-
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
-
U.S. Government Printing Office, Washington, D.C
-
M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, U.S. Government Printing Office, Washington, D.C., 1964.
-
(1964)
National Bureau of Standards Applied Mathematics Series
, vol.55
-
-
Abramowitz, M.1
Stegun, I.A.2
-
2
-
-
84907704492
-
A study on the topological derivative-based imaging of thin electromagnetic inhomogeneities in limited-aperture problems
-
C.Y. Ahn, K. Jeon, Y.-K. Ma, and W.-K. Park, A study on the topological derivative-based imaging of thin electromagnetic inhomogeneities in limited-aperture problems, Inverse Problems, 30 (2014), 105004, https://doi.org/10.1088/0266-5611/30/10/105004.
-
(2014)
Inverse Problems
, vol.30
-
-
Ahn, C.Y.1
Jeon, K.2
Ma, Y.-K.3
Park, W.-K.4
-
3
-
-
84858696570
-
Stability and resolution analysis for a topological derivative based imaging functional
-
H. Ammari, J. Garnier, V. Jugnon, and H. Kang, Stability and resolution analysis for a topological derivative based imaging functional, SIAM J. Control Optim., 50 (2012), pp. 48-76, https://doi.org/10.1137/100812501.
-
(2012)
SIAM J. Control Optim
, vol.50
, pp. 48-76
-
-
Ammari, H.1
Garnier, J.2
Jugnon, V.3
Kang, H.4
-
4
-
-
0033355191
-
A boundary-element solution of the Leontovitch problem
-
A. Bendali, M. Fares, and J. Gay, A boundary-element solution of the Leontovitch problem, IEEE Trans. Antennas and Propagation, 47 (1999), pp. 1597-1605, https://doi.org/10.1109/8.805905.
-
(1999)
IEEE Trans. Antennas and Propagation
, vol.47
, pp. 1597-1605
-
-
Bendali, A.1
Fares, M.2
Gay, J.3
-
5
-
-
77958090329
-
Fast identification of cracks using higher-order topological sensitivity for 2-D potential problems
-
M. Bonnet, Fast identification of cracks using higher-order topological sensitivity for 2-D potential problems, Eng. Anal. Bound. Elem., 35 (2011), pp. 223-235, https://doi.org/10.1016/j.enganabound.2010.08.007.
-
(2011)
Eng. Anal. Bound. Elem
, vol.35
, pp. 223-235
-
-
Bonnet, M.1
-
6
-
-
63249132989
-
Higher-order topological sensitivity for 2-D potential problems
-
M. Bonnet, Higher-order topological sensitivity for 2-D potential problems, Internat. J. Solids Structures, 46 (2009), pp. 2275-2292, https://doi.org/10.1016/j.ijsolstr.2009.01.021.
-
(2009)
Internat. J. Solids Structures
, vol.46
, pp. 2275-2292
-
-
Bonnet, M.1
-
7
-
-
84900816697
-
Fast non-iterative methods for defect identification
-
M. Bonnet, B. Guzina, and N. Nemitz, Fast non-iterative methods for defect identification, Rev. Eur. Mecan. Num., 17 (2008), pp. 571-582, https://www.tandfonline.com/doi/abs/10.3166/remn.17.571-582.
-
(2008)
Rev. Eur. Mecan. Num
, vol.17
, pp. 571-582
-
-
Bonnet, M.1
Guzina, B.2
Nemitz, N.3
-
8
-
-
0345060038
-
Boundary element methods for Maxwell transmission problems in Lipschitz domains
-
A. Buffa, R. Hiptmair, T. von Petersdorff, and C. Schwab, Boundary element methods for Maxwell transmission problems in Lipschitz domains, Numer. Math., 95 (2003), pp. 459-485, https://doi.org/10.1007/s00211-002-0407-z.
-
(2003)
Numer. Math
, vol.95
, pp. 459-485
-
-
Buffa, A.1
Hiptmair, R.2
Von Petersdorff, T.3
Schwab, C.4
-
9
-
-
84989298263
-
Noninvasive imaging of three-dimensional micro and nanostructures by topological methods
-
A. Carpio, T.G. Dimiduk, M.L. Rapún, and V. Selgas, Noninvasive imaging of three-dimensional micro and nanostructures by topological methods, SIAM J. Imaging Sci., 9 (2016), pp. 1324-1354, https://doi.org/10.1137/16M1068669.
-
(2016)
SIAM J. Imaging Sci
, vol.9
, pp. 1324-1354
-
-
Carpio, A.1
Dimiduk, T.G.2
Rapún, M.L.3
Selgas, V.4
-
10
-
-
77949264849
-
Determining planar multiple sound-soft obstacles from scattered acoustic fields
-
A. Carpio, B.T. Johansson, and M.-L. Rapún, Determining planar multiple sound-soft obstacles from scattered acoustic fields, J. Math. Imaging Vision, 36 (2010), pp. 185-199, https://doi.org/10.1007/s10851-009-0182-x.
-
(2010)
J. Math. Imaging Vision
, vol.36
, pp. 185-199
-
-
Carpio, A.1
Johansson, B.T.2
Rapún, M.-L.3
-
11
-
-
49749113620
-
Solving inhomogeneous inverse problems by topological derivative methods
-
A. Carpio and M.L. Rapún, Solving inhomogeneous inverse problems by topological derivative methods, Inverse Problems, 24 (2008), 045014, https://doi.org/10.1088/0266-5611/24/4/045014.
-
(2008)
Inverse Problems
, vol.24
-
-
Carpio, A.1
Rapún, M.L.2
-
12
-
-
47049097350
-
Topological derivatives for shape reconstruction
-
Springer, Berlin
-
A. Carpio and M.L. Rapún, Topological derivatives for shape reconstruction, in Inverse Problems and Imaging, Lecture Notes in Math. 1943, Springer, Berlin, 2008, pp. 83-133, https://doi.org/10.1007/978-3-540-78547-7_5.
-
(2008)
Inverse Problems and Imaging, Lecture Notes in Math
, vol.1943
, pp. 83-133
-
-
Carpio, A.1
Rapún, M.L.2
-
13
-
-
47049119542
-
Domain reconstruction using photothermal techniques
-
A. Carpio and M.L. Rapún, Domain reconstruction using photothermal techniques, J. Comput. Phys., 227 (2008), pp. 8083-8106, https://doi.org/10.1016/j.jcp.2008.05.014.
-
(2008)
J. Comput. Phys
, vol.227
, pp. 8083-8106
-
-
Carpio, A.1
Rapún, M.L.2
-
14
-
-
84866328135
-
Hybrid topological derivative and gradient-based methods for electrical impedance tomography
-
A. Carpio and M.L. Rapún, Hybrid topological derivative and gradient-based methods for electrical impedance tomography, Inverse Problems, 28 (2012), 095010, https://doi.org/10.1088/0266-5611/28/9/095010.
-
(2012)
Inverse Problems
, vol.28
-
-
Carpio, A.1
Rapún, M.L.2
-
15
-
-
52749087179
-
Generalized topological derivative for the Navier equation and inverse scattering in time domain
-
I. Chikichev and B.B. Guzina, Generalized topological derivative for the Navier equation and inverse scattering in time domain, Comput. Methods Appl. Mech. Engrg., 197 (2008), pp. 4467-4484, https://doi.org/10.1016/j.cma.2008.05.019.
-
(2008)
Comput. Methods Appl. Mech. Engrg
, vol.197
, pp. 4467-4484
-
-
Chikichev, I.1
Guzina, B.B.2
-
16
-
-
84962274409
-
Inverse Acoustic and Electromagnetic Scattering Theory
-
Springer, New York
-
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd ed., Appl. Math. Sci. 93, Springer, New York, 2013.
-
(2013)
3Rd Ed., Appl. Math. Sci
, vol.93
-
-
Colton, D.1
Kress, R.2
-
17
-
-
84860219490
-
Shape derivatives of boundary integral operators in electromagnetic scattering. Part II: Application to scattering by a homogeneous dielectric obstacle
-
M. Costabel and F. Le Louër, Shape derivatives of boundary integral operators in electromagnetic scattering. Part II: Application to scattering by a homogeneous dielectric obstacle, Integral Equations Operator Theory, 73 (2012), pp. 17-48, https://doi.org/10.1007/s00020-012-1955-y.
-
(2012)
Integral Equations Operator Theory
, vol.73
, pp. 17-48
-
-
Costabel, M.1
Le Louër, F.2
-
18
-
-
34249772762
-
Bubble method for topology and shape optimization of structures
-
H.A. Eschenauer, V.V. Kobolev, and A. Schumacher, Bubble method for topology and shape optimization of structures, Struct. Optim., 8 (1994), pp. 42-51, https://doi.org/10.1007/BF01742933.
-
(1994)
Struct. Optim
, vol.8
, pp. 42-51
-
-
Eschenauer, H.A.1
Kobolev, V.V.2
Schumacher, A.3
-
19
-
-
10844274795
-
A new method in inverse scattering based on the topological derivative
-
G.R. Feijoo, A new method in inverse scattering based on the topological derivative, Inverse Problems, 20 (2004), pp. 1819-1840, https://doi.org/10.1088/0266-5611/20/6/008.
-
(2004)
Inverse Problems
, vol.20
, pp. 1819-1840
-
-
Feijoo, G.R.1
-
20
-
-
3042858769
-
A high-order algorithm for obstacle scattering in three dimensions
-
M. Ganesh and I.G. Graham, A high-order algorithm for obstacle scattering in three dimensions, J. Comput. Phys., 198 (2004), pp. 211-242, https://doi.org/10.1016/j.jcp.2004.01.007.
-
(2004)
J. Comput. Phys
, vol.198
, pp. 211-242
-
-
Ganesh, M.1
Graham, I.G.2
-
21
-
-
40849094989
-
A hybrid high-order algorithm for radar cross section computations, SIAM
-
M. Ganesh and S.C. Hawkins, A hybrid high-order algorithm for radar cross section computations, SIAM J. Sci. Comput., 29 (2007), pp. 1217-1243, https://doi.org/10.1137/060664859.
-
(2007)
J. Sci. Comput
, vol.29
, pp. 1217-1243
-
-
Ganesh, M.1
Hawkins, S.C.2
-
22
-
-
40849115944
-
A high-order tangential basis algorithm for electromagnetic scattering by curved surfaces
-
M. Ganesh and S.C. Hawkins, A high-order tangential basis algorithm for electromagnetic scattering by curved surfaces, J. Comput. Phys., 227 (2008), pp. 4543-4562, https://doi.org/10.1016/j.jcp.2008.01.016.
-
(2008)
J. Comput. Phys
, vol.227
, pp. 4543-4562
-
-
Ganesh, M.1
Hawkins, S.C.2
-
23
-
-
63349097608
-
A high-order algorithm for multiple electromagnetic scattering in three dimensions
-
M. Ganesh and S.C. Hawkins, A high-order algorithm for multiple electromagnetic scattering in three dimensions, Numer. Algorithms, 50 (2009), pp. 469-510, https://doi.org/10.1007/s11075-008-9238-z.
-
(2009)
Numer. Algorithms
, vol.50
, pp. 469-510
-
-
Ganesh, M.1
Hawkins, S.C.2
-
24
-
-
0035665129
-
The topological asymptotic for PDE systems: The elasticity case
-
S. Garreau, P. Guillaume, and M. Masmoudi, The topological asymptotic for PDE systems: The elasticity case, SIAM J. Control Optim., 39 (2001), pp. 1756-1778, https://doi.org/10.1137/S0363012900369538.
-
(2001)
SIAM J. Control Optim
, vol.39
, pp. 1756-1778
-
-
Garreau, S.1
Guillaume, P.2
Masmoudi, M.3
-
25
-
-
33845230843
-
From imaging to material identification: A generalized concept of topological sensitivity
-
B.B. Guzina and I. Chikichev, From imaging to material identification: A generalized concept of topological sensitivity, J. Mech. Phys. Solids, 55 (2007), pp. 245-279, https://doi.org/10.1016/j.jmps.2006.07.009.
-
(2007)
J. Mech. Phys. Solids
, vol.55
, pp. 245-279
-
-
Guzina, B.B.1
Chikichev, I.2
-
26
-
-
84937112037
-
Why the high-frequency inverse scattering by topological sensitivity may work
-
B.B. Guzina and F. Pourahmadian, Why the high-frequency inverse scattering by topological sensitivity may work, Proc. A., 471 (2015), 20150187, https://doi.org/10.1098/rspa.2015.0187.
-
(2015)
Proc. A
, vol.471
-
-
Guzina, B.B.1
Pourahmadian, F.2
-
27
-
-
16244379216
-
On the Fréchet derivative for obstacle scattering with an impedance boundary condition
-
H. Haddar and R. Kress, On the Fréchet derivative for obstacle scattering with an impedance boundary condition, SIAM J. Appl. Math., 65 (2004), pp. 194-208, https://doi.org/10.1137/S0036139903435413.
-
(2004)
SIAM J. Appl. Math
, vol.65
, pp. 194-208
-
-
Haddar, H.1
Kress, R.2
-
28
-
-
84865860888
-
The domain derivative of time-harmonic electromagnetic waves at interfaces
-
F. Hettlich, The domain derivative of time-harmonic electromagnetic waves at interfaces, Math. Methods Appl. Sci., 35 (2012), pp. 1681-1689, https://doi.org/10.1002/mma.2548.
-
(2012)
Math. Methods Appl. Sci
, vol.35
, pp. 1681-1689
-
-
Hettlich, F.1
-
29
-
-
84923264547
-
Topological sensitivity analysis for the modified Helmholtz equation under an impedance condition on the boundary of a hole
-
M. Jleli, B. Samet, and G. Vial, Topological sensitivity analysis for the modified Helmholtz equation under an impedance condition on the boundary of a hole, J. Math. Pures Appl. (9), 103 (2015), pp. 557-574, https://doi.org/10.1016/j.matpur.2014.07.003.
-
(2015)
J. Math. Pures Appl
, vol.103
, Issue.9
, pp. 557-574
-
-
Jleli, M.1
Samet, B.2
Vial, G.3
-
30
-
-
0002695655
-
Electromagnetic waves scattering: Scattering by obstacles
-
E.R. Pike and P.C. Sabatier, eds., Academic Press, London
-
R. Kress, Electromagnetic waves scattering: Scattering by obstacles, in Scattering, E.R. Pike and P.C. Sabatier, eds., Academic Press, London, 2001, pp. 191-210.
-
(2001)
Scattering
, pp. 191-210
-
-
Kress, R.1
-
31
-
-
84905251470
-
Spectrally accurate numerical solution of hypersingular boundary integral equations for three-dimensional electromagnetic wave scattering problems
-
F. Le Louër, Spectrally accurate numerical solution of hypersingular boundary integral equations for three-dimensional electromagnetic wave scattering problems, J. Comput. Phys., 275 (2014), pp. 662-666, https://doi.org/10.1016/j.jcp.2014.07.022.
-
(2014)
J. Comput. Phys
, vol.275
, pp. 662-666
-
-
Le Louër, F.1
-
32
-
-
85045661223
-
A spectrally accurate method for the direct and inverse scattering problems by multiple 3d dielectric obstacles
-
F. Le Louër, A spectrally accurate method for the direct and inverse scattering problems by multiple 3d dielectric obstacles, ANZIAM e-Journal, 59 (2018), pp. E1-E49, https://doi.org/10.21914/anziamj.v59i0.11534.
-
(2018)
ANZIAM E-Journal
, vol.59
, pp. EE1-E49
-
-
Le Louër, F.1
-
33
-
-
85032922717
-
Topological sensitivity for solving inverse multiple scattering problems in three-dimensional electromagnetism. Part I: One step method
-
F. Le Louër and M.-L. Rapún, Topological sensitivity for solving inverse multiple scattering problems in three-dimensional electromagnetism. Part I: One step method, SIAM J. Imaging Sci., 10 (2017), pp. 1291-1321, https://doi.org/10.1137/17M1113850.
-
(2017)
SIAM J. Imaging Sci
, vol.10
, pp. 1291-1321
-
-
Le Louër, F.1
Rapún, M.-L.2
-
34
-
-
0001225320
-
Analysis of radiative scattering for multiple sphere configurations
-
D.W. Mackowski, Analysis of radiative scattering for multiple sphere configurations, Proc. Roy. Soc. London Ser. A, 433 (1991), pp. 599-614, https://doi.org/10.1098/rspa.1991.0066.
-
(1991)
Proc. Roy. Soc. London Ser. A
, vol.433
, pp. 599-614
-
-
Mackowski, D.W.1
-
35
-
-
84971961740
-
Boundary integral equations for the scattering of electromagnetic waves by a homogeneous dielectric obstacle
-
P.A. Martin and P. Ola, Boundary integral equations for the scattering of electromagnetic waves by a homogeneous dielectric obstacle, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), pp. 185-208, https://doi.org/10.1017/S0308210500021296.
-
(1993)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.123
, pp. 185-208
-
-
Martin, P.A.1
Ola, P.2
-
36
-
-
17444421198
-
The topological asymptotic expansion for the Maxwell equations and some applications
-
M. Masmoudi, J. Pommier, and B. Samet, The topological asymptotic expansion for the Maxwell equations and some applications, Inverse Problems, 21 (2005), pp. 547-564, https://doi.org/10.1088/0266-5611/21/2/008.
-
(2005)
Inverse Problems
, vol.21
, pp. 547-564
-
-
Masmoudi, M.1
Pommier, J.2
Samet, B.3
-
37
-
-
0012541720
-
Finite Element Methods for Maxwell’s Equations
-
Oxford University Press, New York
-
P. Monk, Finite Element Methods for Maxwell’s Equations, Numer. Math. Sci. Comput., Oxford University Press, New York, 2003.
-
(2003)
Numer. Math. Sci. Comput
-
-
Monk, P.1
-
38
-
-
0003807866
-
Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems
-
Springer-Verlag, New York
-
J.-C. Nédélec, Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems, Appl. Math. Sci. 144, Springer-Verlag, New York, 2001.
-
(2001)
Appl. Math. Sci
, vol.144
-
-
Nédélec, J.-C.1
-
39
-
-
53249111801
-
Topological sensitivity and FMM-accelerated BEM applied to 3D acoustic inverse scattering
-
N. Nemitz and M. Bonnet, Topological sensitivity and FMM-accelerated BEM applied to 3D acoustic inverse scattering, Eng. Anal. Bound. Elem., 32 (2008), pp. 957-970, https://doi.org/10.1016/j.enganabound.2007.02.006.
-
(2008)
Eng. Anal. Bound. Elem
, vol.32
, pp. 957-970
-
-
Nemitz, N.1
Bonnet, M.2
-
40
-
-
0037436110
-
Topological sensitivity analysis
-
A.A. Novotny, R.A. Feijoo, C. Padra, and E. Taroco, Topological sensitivity analysis, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 803-829, https://doi.org/10.1016/S0045-7825(02)00599-6.
-
(2003)
Comput. Methods Appl. Mech. Engrg
, vol.192
, pp. 803-829
-
-
Novotny, A.A.1
Feijoo, R.A.2
Padra, C.3
Taroco, E.4
-
41
-
-
84855192911
-
Topological derivative strategy for one-step iteration imaging of arbitrary shaped thin, curve-like electromagnetic inclusions
-
W.K. Park, Topological derivative strategy for one-step iteration imaging of arbitrary shaped thin, curve-like electromagnetic inclusions, J. Comput. Phys., 231 (2012), pp. 1426-1439, https://doi.org/10.1016/j.jcp.2011.10.014.
-
(2012)
J. Comput. Phys
, vol.231
, pp. 1426-1439
-
-
Park, W.K.1
-
42
-
-
0032681559
-
On the topological derivative in shape optimization
-
J. Sokowłoski and A. Żochowski, On the topological derivative in shape optimization, SIAM J. Control Optim., 37 (1999), pp. 1251-1272, https://doi.org/10.1137/S0363012997323230.
-
(1999)
SIAM J. Control Optim
, vol.37
, pp. 1251-1272
-
-
Sokowłoski, J.1
Żochowski, A.2
-
43
-
-
79957477823
-
Modified combined field integral equations for electromagnetic scattering
-
O. Steinbach and M. Windisch, Modified combined field integral equations for electromagnetic scattering, SIAM J. Numer. Anal., 47 (2009), pp. 1149-1167, https://doi.org/10.1137/070698063.
-
(2009)
SIAM J. Numer. Anal
, vol.47
, pp. 1149-1167
-
-
Steinbach, O.1
Windisch, M.2
-
44
-
-
84943572820
-
Stability and resolution analysis of topological derivative based localization of small electromagnetic inclusions
-
A. Wahab, Stability and resolution analysis of topological derivative based localization of small electromagnetic inclusions, SIAM J. Imaging Sci., 8 (2015), pp. 1687-1717, https://doi.org/10.1137/141000567.
-
(2015)
SIAM J. Imaging Sci
, vol.8
, pp. 1687-1717
-
-
Wahab, A.1
-
45
-
-
85032943302
-
Detection of electromagnetic inclusions using topological sensitivity
-
A. Wahab, T. Abbas, N. Ahmed, and Q.M.Z. Zia, Detection of electromagnetic inclusions using topological sensitivity, J. Comput. Math., 35 (2017), pp. 642-671, https://doi.org/10.4208/jcm.1609-m2016-0498.
-
(2017)
J. Comput. Math
, vol.35
, pp. 642-671
-
-
Wahab, A.1
Abbas, T.2
Ahmed, N.3
Zia, Q.M.Z.4
-
46
-
-
84924390005
-
Inverse acoustic scattering by solid obstacles: Topological sensitivity and its preliminary application
-
H. Yuan, G. Bracq, and Q. Lin, Inverse acoustic scattering by solid obstacles: Topological sensitivity and its preliminary application, Inverse Probl. Sci. Eng., 24 (2016), pp. 92-126, https://doi.org/10.1080/17415977.2015.1017483.
-
(2016)
Inverse Probl. Sci. Eng
, vol.24
, pp. 92-126
-
-
Yuan, H.1
Bracq, G.2
Lin, Q.3
|