-
1
-
-
0003283055
-
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
-
U.S. Government Printing Office, Washington, DC, USA
-
Abramowitz M., Stegun I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Natl. Bur. Stand., Appl. Math. Ser. 1964, vol. 55. U.S. Government Printing Office, Washington, DC, USA.
-
(1964)
Natl. Bur. Stand., Appl. Math. Ser.
, vol.55
-
-
Abramowitz, M.1
Stegun, I.A.2
-
2
-
-
84858696570
-
Stability and resolution analysis for a topological derivative based imaging functional
-
Ammari H., Garnier J., Jugnon V., Kang H. Stability and resolution analysis for a topological derivative based imaging functional. SIAM J. Control Optim. 2012, 50(1):48-76.
-
(2012)
SIAM J. Control Optim.
, vol.50
, Issue.1
, pp. 48-76
-
-
Ammari, H.1
Garnier, J.2
Jugnon, V.3
Kang, H.4
-
3
-
-
84881310863
-
Boundary perturbations due to the presence of small linear cracks in an elastic body
-
Ammari H., Kang H., Lee H., Lim J. Boundary perturbations due to the presence of small linear cracks in an elastic body. J. Elast. 2013, 113(1):75-91.
-
(2013)
J. Elast.
, vol.113
, Issue.1
, pp. 75-91
-
-
Ammari, H.1
Kang, H.2
Lee, H.3
Lim, J.4
-
4
-
-
30944440921
-
The topological asymptotic for the Navier-Stokes equations
-
Amstutz S. The topological asymptotic for the Navier-Stokes equations. ESAIM Control Optim. Calc. Var. 2005, 11(3):401-425.
-
(2005)
ESAIM Control Optim. Calc. Var.
, vol.11
, Issue.3
, pp. 401-425
-
-
Amstutz, S.1
-
5
-
-
33748482208
-
Sensitivity analysis with respect to a local perturbation of the material property
-
Amstutz S. Sensitivity analysis with respect to a local perturbation of the material property. Asymptot. Anal. 2006, 49(1-2):87-108.
-
(2006)
Asymptot. Anal.
, vol.49
, Issue.1-2
, pp. 87-108
-
-
Amstutz, S.1
-
7
-
-
77950583212
-
On a product of modified Bessel functions
-
Baricz A. On a product of modified Bessel functions. Proc. Am. Math. Soc. 2009, 137(1):189-193.
-
(2009)
Proc. Am. Math. Soc.
, vol.137
, Issue.1
, pp. 189-193
-
-
Baricz, A.1
-
9
-
-
10844250303
-
Sounding of finite solid bodies by way of topological derivative
-
Bonnet M., Guzina B.B. Sounding of finite solid bodies by way of topological derivative. Int. J. Numer. Methods Eng. 2004, 61:2344-2373.
-
(2004)
Int. J. Numer. Methods Eng.
, vol.61
, pp. 2344-2373
-
-
Bonnet, M.1
Guzina, B.B.2
-
10
-
-
84872017798
-
Topological and shape gradient strategy for solving geometrical inverse problems
-
Chaabane S., Masmoudi M., Meftahi H. Topological and shape gradient strategy for solving geometrical inverse problems. J. Math. Anal. Appl. 2013, 400:724-742.
-
(2013)
J. Math. Anal. Appl.
, vol.400
, pp. 724-742
-
-
Chaabane, S.1
Masmoudi, M.2
Meftahi, H.3
-
11
-
-
17144405698
-
Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection
-
Dominguez N., Gibiat V., Esquerrea Y. Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection. Wave Motion 2005, 42:31-52.
-
(2005)
Wave Motion
, vol.42
, pp. 31-52
-
-
Dominguez, N.1
Gibiat, V.2
Esquerrea, Y.3
-
12
-
-
10844274795
-
A new method in inverse scattering based on the topological derivative
-
Feijóo G.R. A new method in inverse scattering based on the topological derivative. Inverse Probl. 2004, 20:1819-1840.
-
(2004)
Inverse Probl.
, vol.20
, pp. 1819-1840
-
-
Feijóo, G.R.1
-
13
-
-
0442307379
-
The topological derivative for the Poisson's problem
-
Feijóo R.A., Novotny A.A., Taroco E., Padra C. The topological derivative for the Poisson's problem. Math. Models Methods Appl. Sci. 2003, 13(2):1825-1844.
-
(2003)
Math. Models Methods Appl. Sci.
, vol.13
, Issue.2
, pp. 1825-1844
-
-
Feijóo, R.A.1
Novotny, A.A.2
Taroco, E.3
Padra, C.4
-
14
-
-
0035665129
-
The topological asymptotic for pde systems: the elasticity case
-
Garreau S., Guillaume Ph., Masmoudi M. The topological asymptotic for pde systems: the elasticity case. SIAM J. Control Optim. 2001, 39(6):1756-1778.
-
(2001)
SIAM J. Control Optim.
, vol.39
, Issue.6
, pp. 1756-1778
-
-
Garreau, S.1
Guillaume, P.2
Masmoudi, M.3
-
15
-
-
0042928461
-
The topological asymptotic expansion for the Dirichlet problem
-
Guillaume Ph., Sididris K. The topological asymptotic expansion for the Dirichlet problem. SIAM J. Control Optim. 2002, 41:1042-1072.
-
(2002)
SIAM J. Control Optim.
, vol.41
, pp. 1042-1072
-
-
Guillaume, P.1
Sididris, K.2
-
16
-
-
14244260727
-
Topological sensitivity and shape optimization for the Stokes equations
-
Guillaume Ph., Sididris K. Topological sensitivity and shape optimization for the Stokes equations. SIAM J. Control Optim. 2004, 43:1-31.
-
(2004)
SIAM J. Control Optim.
, vol.43
, pp. 1-31
-
-
Guillaume, P.1
Sididris, K.2
-
17
-
-
84856493034
-
Second-order topological expansion for electrical impedance tomography
-
Hintermüller M., Laurain A., Novotny A.A. Second-order topological expansion for electrical impedance tomography. Adv. Comput. Math. 2012, 36(2):235-265.
-
(2012)
Adv. Comput. Math.
, vol.36
, Issue.2
, pp. 235-265
-
-
Hintermüller, M.1
Laurain, A.2
Novotny, A.A.3
-
18
-
-
0041724128
-
Inequalities for some special functions
-
Joshi C.M., Bissu S.K. Inequalities for some special functions. J. Comput. Appl. Math. 1996, 69(2):251-259.
-
(1996)
J. Comput. Appl. Math.
, vol.69
, Issue.2
, pp. 251-259
-
-
Joshi, C.M.1
Bissu, S.K.2
-
19
-
-
0042693799
-
Some inequalities of Bessel and modified Bessel functions
-
Joshi C.M., Bissu S.K. Some inequalities of Bessel and modified Bessel functions. J. Aust. Math. Soc. A 1991, 50:333-342.
-
(1991)
J. Aust. Math. Soc. A
, vol.50
, pp. 333-342
-
-
Joshi, C.M.1
Bissu, S.K.2
-
20
-
-
79451470114
-
Some inequalities for modified Bessel functions
-
Laforgia A., Natalini P. Some inequalities for modified Bessel functions. J. Inequal. Appl. 2010, 2010. Article ID 253035, 10 pp.
-
(2010)
J. Inequal. Appl.
, vol.2010
, pp. 10
-
-
Laforgia, A.1
Natalini, P.2
-
21
-
-
84870718394
-
The topological gradient method: from optimal design to image processing
-
Larnier S., Fehrenbach J., Masmoudi M. The topological gradient method: from optimal design to image processing. Milan J. Math. 2012, 80:411-441.
-
(2012)
Milan J. Math.
, vol.80
, pp. 411-441
-
-
Larnier, S.1
Fehrenbach, J.2
Masmoudi, M.3
-
22
-
-
81755171892
-
Analysis of topological derivative function for a fast electromagnetic imaging of perfectly conducting cracks
-
Ma Y.K., Kim P.S., Park W.K. Analysis of topological derivative function for a fast electromagnetic imaging of perfectly conducting cracks. Prog. Electromagn. Res. 2012, 122:311-325.
-
(2012)
Prog. Electromagn. Res.
, vol.122
, pp. 311-325
-
-
Ma, Y.K.1
Kim, P.S.2
Park, W.K.3
-
23
-
-
84923246114
-
-
Mélina, a finite element library
-
D. Martin, Mélina, a finite element library, 2009.
-
(2009)
-
-
Martin, D.1
-
24
-
-
12844258058
-
The topological asymptotic
-
Computational Methods for Control Applications
-
Masmoudi M. The topological asymptotic. Int. Ser. GAKUTO 2002.
-
(2002)
Int. Ser. GAKUTO
-
-
Masmoudi, M.1
-
25
-
-
0037436110
-
Topological sensitivity analysis
-
Novotny A.A., Feijóo R.A., Taroco E., Padra C. Topological sensitivity analysis. Comput. Methods Appl. Mech. Eng. 2003, 192:803-829.
-
(2003)
Comput. Methods Appl. Mech. Eng.
, vol.192
, pp. 803-829
-
-
Novotny, A.A.1
Feijóo, R.A.2
Taroco, E.3
Padra, C.4
-
26
-
-
19944370505
-
The topological asymptotic for the Helmholtz equation with Dirichlet condition on the boundary of an arbitrarily shaped hole
-
Pommier J., Samet B. The topological asymptotic for the Helmholtz equation with Dirichlet condition on the boundary of an arbitrarily shaped hole. SIAM J. Control Optim. 2004, 43(3):899-921.
-
(2004)
SIAM J. Control Optim.
, vol.43
, Issue.3
, pp. 899-921
-
-
Pommier, J.1
Samet, B.2
-
27
-
-
72649103916
-
Topological sensitivity analysis with respect to a small hole located at the boundary of the domain
-
Samet B. Topological sensitivity analysis with respect to a small hole located at the boundary of the domain. Asymptot. Anal. 2010, 66(1):35-49.
-
(2010)
Asymptot. Anal.
, vol.66
, Issue.1
, pp. 35-49
-
-
Samet, B.1
-
28
-
-
4944259639
-
The topological asymptotic for the Helmholtz equation
-
Samet B., Amstutz S., Masmoudi M. The topological asymptotic for the Helmholtz equation. SIAM J. Control Optim. 2003, 42(5):1523-1544.
-
(2003)
SIAM J. Control Optim.
, vol.42
, Issue.5
, pp. 1523-1544
-
-
Samet, B.1
Amstutz, S.2
Masmoudi, M.3
-
30
-
-
0032681559
-
On the topological derivative in shape optimization
-
Sokolowski J., Zochowski A. On the topological derivative in shape optimization. SIAM J. Control Optim. 1999, 37:1241-1272.
-
(1999)
SIAM J. Control Optim.
, vol.37
, pp. 1241-1272
-
-
Sokolowski, J.1
Zochowski, A.2
|