메뉴 건너뛰기




Volumn 3194, Issue , 2004, Pages 98-115

Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction

Author keywords

[No Author keywords available]

Indexed keywords

BIOMEDICAL ENGINEERING; COMPUTATIONAL METHODS; DATA STRUCTURES; DATABASE SYSTEMS; INFORMATION RETRIEVAL; LOGIC PROGRAMMING; ABSTRACTING; ARTIFICIAL INTELLIGENCE; INFORMATION ANALYSIS; LEARNING SYSTEMS;

EID: 22944485317     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-30109-7_11     Document Type: Conference Paper
Times cited : (40)

References (31)
  • 1
    • 22944450119 scopus 로고    scopus 로고
    • Learning Information Extraction Rules: An Inductive Logic Programming Approach
    • F. van Harmelen, editor, Amsterdam
    • S. Aitken. Learning Information Extraction Rules: An Inductive Logic Programming Approach. In F. van Harmelen, editor, Proceedings of the 15th European Conference on Artificial Intelligence, Amsterdam, 2002.
    • (2002) Proceedings of the 15th European Conference on Artificial Intelligence
    • Aitken, S.1
  • 4
    • 0034868773 scopus 로고    scopus 로고
    • Can bibliographic pointers for known biological data be found automatically? Protein interactions as a case study
    • C. Blaschke and A. Valencia. Can Bibliographic Pointers for Known Biological Data be Found Automatically? Protein Interactions as a Case Study. Comparative and Functional Genomics, 2:196-206, 2001.
    • (2001) Comparative and Functional Genomics , vol.2 , pp. 196-206
    • Blaschke, C.1    Valencia, A.2
  • 5
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A. Bradley. The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7):1145-1159, 1997.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.1
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • L. Breiman. Bagging Predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0035312953 scopus 로고    scopus 로고
    • Relational learning with statistical predicate invention: Better models for hypertext
    • M. Craven and S. Slattery. Relational Learning with Statistical Predicate Invention: Better Models for Hypertext. Machine Learning, 43(1/2):97-119, 2001.
    • (2001) Machine Learning , vol.43 , Issue.1-2 , pp. 97-119
    • Craven, M.1    Slattery, S.2
  • 12
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: Four current directions
    • T. Dietterich. Machine-Learning Research: Four Current Directions. The AI Magazine, 18(4):97-136, 1998.
    • (1998) The AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.1
  • 14
    • 84905866214 scopus 로고    scopus 로고
    • Boosted wrapper induction
    • D. Freitag and N. Kushmerick. Boosted Wrapper Induction. In AAAI/IAAI, pages 577-583, 2000.
    • (2000) AAAI/IAAI , pp. 577-583
    • Freitag, D.1    Kushmerick, N.2
  • 16
    • 22944459279 scopus 로고    scopus 로고
    • Guidelines for protein name tagging
    • Georgetown University
    • Z. Hu. Guidelines for Protein Name Tagging. Technical report, Georgetown University, 2003.
    • (2003) Technical Report
    • Hu, Z.1
  • 22
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • M. Porter. An Algorithm for Suffix Stripping. Program, 14(3): 130-137, 1980.
    • (1980) Program , vol.14 , Issue.3 , pp. 130-137
    • Porter, M.1
  • 26
    • 0742321913 scopus 로고    scopus 로고
    • Mining the biomedical literature in the genomic era: An overview
    • H. Shatkay and R. Feldman. Mining the Biomedical Literature in the Genomic Era: An Overview. Journal of Computational Biology, 10(6):821-55, 2003.
    • (2003) Journal of Computational Biology , vol.10 , Issue.6 , pp. 821-855
    • Shatkay, H.1    Feldman, R.2
  • 28
    • 9444248896 scopus 로고    scopus 로고
    • Feature construction with inductive logic programming: A study of quantitative predictions of biological activity aided by structural attributes
    • S. Muggleton, editor, Stockholm University, Royal Institute of Technology
    • A. Srinivasan and R. King. Feature Construction with Inductive Logic Programming: A Study of Quantitative Predictions of Biological Activity Aided by Structural Attributes. In S. Muggleton, editor, Proceedings of the 6th International Workshop on Inductive Logic Programming, pages 352-367. Stockholm University, Royal Institute of Technology, 1996.
    • (1996) Proceedings of the 6th International Workshop on Inductive Logic Programming , pp. 352-367
    • Srinivasan, A.1    King, R.2
  • 29
    • 0030212927 scopus 로고    scopus 로고
    • Theories for Mutagenicity: A Study in First-Order and Feature-Based Induction
    • A. Srinivasan, S. Muggleton, M. Sternberg, and R. King. Theories for Mutagenicity: A Study in First-Order and Feature-Based Induction. Artificial Intelligence, 85(1-2):277-299, 1996.
    • (1996) Artificial Intelligence , vol.85 , Issue.1-2 , pp. 277-299
    • Srinivasan, A.1    Muggleton, S.2    Sternberg, M.3    King, R.4
  • 31
    • 0242559066 scopus 로고    scopus 로고
    • Extraction of protein interaction information from unstructured text using a context-free grammar
    • J. Temkin and M. Gilder. Extraction of Protein Interaction Information From Unstructured Text Using a Context-Free Grammar. Bioinformatics, 19(16):2046-2053, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.16 , pp. 2046-2053
    • Temkin, J.1    Gilder, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.