메뉴 건너뛰기




Volumn , Issue , 2005, Pages 677-683

View learning for statistical relational learning: With an application to mammography

Author keywords

[No Author keywords available]

Indexed keywords

BAYES NET; DATABASE APPLICATIONS; DATABASE SCHEMAS; PROBABILISTIC MODELS; RELATIONAL DATABASE; RELATIONAL TABLES; STATISTICAL RELATIONAL LEARNING;

EID: 84880739463     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (51)

References (27)
  • 1
    • 0028805669 scopus 로고
    • Screening mammography in community practice: Positive predictive value of abnormal findings and yield of follow-up diagnostic procedures
    • M.L. Brown, F. Houn, E.A. Sickles, and L.G. Kessler. Screening mammography in community practice: positive predictive value of abnormal findings and yield of follow-up diagnostic procedures. AJR Am J Roentgenol, 165:1373-1377, 1995.
    • (1995) AJR Am J Roentgenol , vol.165 , pp. 1373-1377
    • Brown, M.L.1    Houn, F.2    Sickles, E.A.3    Kessler, L.G.4
  • 2
    • 0034566806 scopus 로고    scopus 로고
    • A Bayesian network for screening mammography
    • E.S. Burnside, D.L. Rubin, and R.D. Shachter. A Bayesian network for screening mammography. In AMIA, pages 106-110, 2000.
    • (2000) AMIA , pp. 106-110
    • Burnside, E.S.1    Rubin, D.L.2    Shachter, R.D.3
  • 3
    • 63349097174 scopus 로고    scopus 로고
    • Using a Bayesian network to predict the probability and type of breast cancer represented by microcalcifications on mammography
    • E.S. Burnside, D.L. Rubin, and R.D. Shachter. Using a Bayesian network to predict the probability and type of breast cancer represented by microcalcifications on mammography. Medinfo, 2004:13-17, 2004.
    • (2004) Medinfo , vol.2004 , pp. 13-17
    • Burnside, E.S.1    Rubin, D.L.2    Shachter, R.D.3
  • 4
    • 26944466555 scopus 로고    scopus 로고
    • CLP(BN): Constraint logic programming for probabilistic knowledge
    • Acapulco
    • V. Santos Costa, D. Page, M. Qazi, and J. Cussens. CLP(BN): Constraint logic programming for probabilistic knowledge. In UAI-03, pages 517-524, Acapulco, 2003.
    • (2003) UAI-03 , pp. 517-524
    • Santos Costa, V.1    Page, D.2    Qazi, M.3    Cussens, J.4
  • 5
    • 0035451897 scopus 로고    scopus 로고
    • Parameter estimation in stochastic logic programs
    • DOI 10.1023/A:1010924021315, Inductive Logic Programming
    • J. Cussens. Parameter estimation in stochastic logic programs. Machine Learning, 44(3):245-271, 2001. (Pubitemid 32761112)
    • (2001) Machine Learning , vol.44 , Issue.3 , pp. 245-271
    • Cussens, J.1
  • 6
    • 0034169305 scopus 로고    scopus 로고
    • Shortage of qualified breast imagers could lead to crisis
    • G. Ecklund. Shortage of qualified breast imagers could lead to crisis. Diagn Imaging, 22:31-33, 2000.
    • (2000) Diagn Imaging , vol.22 , pp. 31-33
    • Ecklund, G.1
  • 9
    • 0002219642 scopus 로고    scopus 로고
    • Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm
    • San Francisco, CA, Morgan Kaufmann Publishers
    • Nir Friedman, I. Nachman, and D. Pe'er. Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm. In UAI-99, pages 206-215, San Francisco, CA, 1999. Morgan Kaufmann Publishers.
    • (1999) UAI-99 , pp. 206-215
    • Friedman, N.1    Nachman, I.2    Pe'Er, D.3
  • 10
    • 0041315314 scopus 로고
    • An entropy-based learning algorithm of Bayesian conditional trees
    • San Mateo, CA, Morgan Kaufmann Publishers
    • Dan Geiger. An entropy-based learning algorithm of Bayesian conditional trees. In UAI-92, pages 92-97, San Mateo, CA, 1992. Morgan Kaufmann Publishers.
    • (1992) UAI-92 , pp. 92-97
    • Geiger, D.1
  • 12
    • 0030982828 scopus 로고    scopus 로고
    • Construction of a Bayesian network for mammographic diagnosis of breast cancer
    • DOI 10.1016/S0010-4825(96)00039-X, PII S001048259600039X
    • C.E. Kahn Jr, L.M. Roberts, K.A. Shaffer, and P. Haddawy. Construction of a Bayesian network for mammographic diagnosis of breast cancer. Comput Biol Med., 27:19-29, 1997. (Pubitemid 27121972)
    • (1997) Computers in Biology and Medicine , vol.27 , Issue.1 , pp. 19-29
    • Kahn Jr., C.E.1    Roberts, L.M.2    Shaffer, K.A.3    Haddawy, P.4
  • 14
    • 84943258577 scopus 로고    scopus 로고
    • Propositionalisation and aggregates
    • Arno J. Knobbe, Marc de Haas, and Arno Siebes. Propositionalisation and aggregates. In PKDD01, pages 277-288, 2001.
    • (2001) PKDD01 , pp. 277-288
    • Knobbe, A.J.1    De Haas, M.2    Siebes, A.3
  • 17
    • 77952399122 scopus 로고    scopus 로고
    • Learning relational probability trees
    • ACM Press
    • Jennifer Neville, David Jensen, Lisa Friedland, and Michael Hay. Learning relational probability trees. In KDD '03, pages 625-630. ACM Press, 2003.
    • (2003) KDD '03 , pp. 625-630
    • Neville, J.1    Jensen, D.2    Friedland, L.3    Hay, M.4
  • 18
    • 22944446870 scopus 로고    scopus 로고
    • Aggregation-based feature invention and relational concept classes
    • Claudia Perlich and Foster Provost. Aggregation-based feature invention and relational concept classes. In KDD '03, pages 167-176, 2003.
    • (2003) KDD '03 , pp. 167-176
    • Perlich, C.1    Provost, F.2
  • 19
    • 4444260281 scopus 로고
    • Naive Bayesian classifier within ILP-R
    • L. De Raedt, editor
    • U. Pompe and I. Kononenko. Naive Bayesian classifier within ILP-R. In L. De Raedt, editor, ILP95, pages 417-436, 1995.
    • (1995) ILP95 , pp. 417-436
    • Pompe, U.1    Kononenko, I.2
  • 20
    • 18744397044 scopus 로고    scopus 로고
    • Statistical relational learning for document mining
    • Alexandrin Popescul, Lyle H. Ungar, Steve Lawrence, and David M. Pennock. Statistical relational learning for document mining. In ICDM03, pages 275-282, 2003.
    • (2003) ICDM03 , pp. 275-282
    • Popescul, A.1    Ungar, L.H.2    Lawrence, S.3    Pennock, D.M.4
  • 23
    • 22944492294 scopus 로고
    • A statistical learning method for logic programs with distributional semantics
    • L. Sterling, editor, Cambridge, Massachusetts, MIT Press
    • T. Sato. A statistical learning method for logic programs with distributional semantics. In L. Sterling, editor, Proceedings of the Twelth International conference on logic programming, pages 715-729, Cambridge, Massachusetts, 1995. MIT Press.
    • (1995) Proceedings of the Twelth International Conference on Logic Programming , pp. 715-729
    • Sato, T.1
  • 24
    • 0036721292 scopus 로고    scopus 로고
    • Performance parameters for screening and diagnostic mammography: Specialist and general radiologists
    • E.A. Sickles, D.E. Wolverton, and K.E. Dee. Performance parameters for screening and diagnostic mammography: specialist and general radiologists. Radiology, 224:861-869, 2002. (Pubitemid 34919825)
    • (2002) Radiology , vol.224 , Issue.3 , pp. 861-869
    • Sickles, E.A.1    Wolverton, D.E.2    Dee, K.E.3
  • 25
    • 33646436321 scopus 로고    scopus 로고
    • Feature construction with inductive logic programming: A study of quantitative predictions of biological activity aided by structural attributes
    • A. Srinivasan and R. King. Feature construction with inductive logic programming: A study of quantitative predictions of biological activity aided by structural attributes. In ILP97, pages 89-104, 1997.
    • (1997) ILP97 , pp. 89-104
    • Srinivasan, A.1    King, R.2
  • 27
    • 22944433186 scopus 로고    scopus 로고
    • First order random forests with complex aggregates
    • Celine Vens, Anneleen Van Assche, Hendrik Blockeel, and Sašo Džeroski. First order random forests with complex aggregates. In ILP, pages 323-340, 2004.
    • (2004) ILP , pp. 323-340
    • Vens, C.1    Van Assche, A.2    Blockeel, H.3    Džeroski, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.