메뉴 건너뛰기




Volumn 9, Issue 1, 2018, Pages

Prokaryotic nanocompartments form synthetic organelles in a eukaryote

Author keywords

[No Author keywords available]

Indexed keywords

CATALYSIS; CELL ORGANELLE; COMPARTMENTALIZATION; EUKARYOTE; PROKARYOTE; PROTEIN; YEAST;

EID: 85044921427     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-018-03768-x     Document Type: Article
Times cited : (99)

References (38)
  • 1
    • 77749264485 scopus 로고    scopus 로고
    • Spatially ordered dynamics of the bacterial carbon fixation machinery
    • Savage, D. F., Afonso, B., Chen, A. H. & Silver, P. A. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327, 1258-1261 (2010).
    • (2010) Science , vol.327 , pp. 1258-1261
    • Savage, D.F.1    Afonso, B.2    Chen, A.H.3    Silver, P.A.4
  • 3
    • 77952945226 scopus 로고    scopus 로고
    • Bacterial microcompartment organelles: Protein shell structure and evolution
    • Yeates, T. O., Crowley, C. S. & Tanaka, S. Bacterial microcompartment organelles: protein shell structure and evolution. Annu. Rev. Biophys. 39, 185-205 (2010).
    • (2010) Annu. Rev. Biophys. , vol.39 , pp. 185-205
    • Yeates, T.O.1    Crowley, C.S.2    Tanaka, S.3
  • 4
    • 84881534029 scopus 로고    scopus 로고
    • Eut bacterial microcompartments: Insights into their function, structure, and bioengineering applications
    • Held, M., Quin, M. B. & Schmidt-Dannert, C. Eut bacterial microcompartments: insights into their function, structure, and bioengineering applications. J. Mol. Microbiol. Biotechnol. 23, 308-320 (2013).
    • (2013) J. Mol. Microbiol. Biotechnol. , vol.23 , pp. 308-320
    • Held, M.1    Quin, M.B.2    Schmidt-Dannert, C.3
  • 5
    • 84869875863 scopus 로고    scopus 로고
    • Designing biological compartmentalization
    • Chen, A. H. & Silver, P. A. Designing biological compartmentalization. Trends Cell. Biol. 22, 662-670 (2012).
    • (2012) Trends Cell. Biol. , vol.22 , pp. 662-670
    • Chen, A.H.1    Silver, P.A.2
  • 6
    • 84880953448 scopus 로고    scopus 로고
    • Engineering nanoscale protein compartments for synthetic organelles
    • Kim, E. Y. & Tullman-Ercek, D. Engineering nanoscale protein compartments for synthetic organelles. Curr. Opin. Biotechnol. 24, 627-632 (2013).
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 627-632
    • Kim, E.Y.1    Tullman-Ercek, D.2
  • 7
    • 85026647251 scopus 로고    scopus 로고
    • Engineering the bacterial microcompartment domain for molecular scaffolding applications
    • Young, E. J. et al. Engineering the bacterial microcompartment domain for molecular scaffolding applications. Front. Microbiol. 8, 1441 (2017).
    • (2017) Front. Microbiol. , vol.8 , pp. 1441
    • Young, E.J.1
  • 9
    • 85010223197 scopus 로고    scopus 로고
    • Engineering carbon fixation with artificial protein organelles
    • Giessen, T. W. & Silver, P. A. Engineering carbon fixation with artificial protein organelles. Curr. Opin. Biotechnol. 46, 42-50 (2017).
    • (2017) Curr. Opin. Biotechnol. , vol.46 , pp. 42-50
    • Giessen, T.W.1    Silver, P.A.2
  • 10
    • 85021262610 scopus 로고    scopus 로고
    • Assembly principles and structure of a 6. 5-MDa bacterial microcompartment shell
    • Sutter, M., Greber, B., Aussignargues, C. & Kerfeld, C. A. Assembly principles and structure of a 6. 5-MDa bacterial microcompartment shell. Science 356, 1293-1297 (2017).
    • (2017) Science , vol.356 , pp. 1293-1297
    • Sutter, M.1    Greber, B.2    Aussignargues, C.3    Kerfeld, C.A.4
  • 11
    • 85014776117 scopus 로고    scopus 로고
    • Widespread distribution of encapsulin nanocompartments reveals functional diversity
    • Giessen, T. W. & Silver, P. A. Widespread distribution of encapsulin nanocompartments reveals functional diversity. Nat. Microbiol 2, 17029 (2017).
    • (2017) Nat. Microbiol , vol.2 , pp. 17029
    • Giessen, T.W.1    Silver, P.A.2
  • 12
    • 84969498086 scopus 로고    scopus 로고
    • Encapsulins: Microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science
    • Giessen, T. W. Encapsulins: microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science. Curr. Opin. Chem. Biol. 34, 1-10 (2016).
    • (2016) Curr. Opin. Chem. Biol. , vol.34 , pp. 1-10
    • Giessen, T.W.1
  • 13
    • 51349084876 scopus 로고    scopus 로고
    • Structural basis of enzyme encapsulation into a bacterial nanocompartment
    • Sutter, M. et al. Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat. Struct. Mol. Biol. 15, 939-947 (2008).
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 939-947
    • Sutter, M.1
  • 14
    • 84906825913 scopus 로고    scopus 로고
    • A virus capsidlike nanocompartment that stores iron and protects bacteria from oxidative stress
    • McHugh, C. A. et al. A virus capsidlike nanocompartment that stores iron and protects bacteria from oxidative stress. Embo. J. 33, 1896-1911 (2014).
    • (2014) Embo. J. , vol.33 , pp. 1896-1911
    • McHugh, C.A.1
  • 15
    • 84986213804 scopus 로고    scopus 로고
    • Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments
    • He, D. et al. Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments. Elife 5, e18972 (2016).
    • (2016) Elife , vol.5 , pp. e18972
    • He, D.1
  • 16
    • 84903542951 scopus 로고    scopus 로고
    • Characterization of a Mycobacterium tuberculosis nanocompartment and its potential cargo proteins
    • Contreras, H. et al. Characterization of a Mycobacterium tuberculosis nanocompartment and its potential cargo proteins. J. Biol. Chem. 289, 18279-18289 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 18279-18289
    • Contreras, H.1
  • 17
    • 85040078468 scopus 로고    scopus 로고
    • Structural characterization of native and modified encapsulins as nanoplatforms for in vitro catalysis and cellular uptake
    • Putri, R. M. et al. Structural characterization of native and modified encapsulins as nanoplatforms for in vitro catalysis and cellular uptake. ACS Nano 11, 12796-12804 (2017).
    • (2017) ACS Nano , vol.11 , pp. 12796-12804
    • Putri, R.M.1
  • 18
    • 85021774635 scopus 로고    scopus 로고
    • Successful PEGylation of hollow encapsulin nanoparticles from Rhodococcus erythropolis N771 without affecting their disassembly and reassembly properties
    • Sonotaki, S. et al. Successful PEGylation of hollow encapsulin nanoparticles from Rhodococcus erythropolis N771 without affecting their disassembly and reassembly properties. Biomater. Sci. 5, 1082-1089 (2017).
    • (2017) Biomater. Sci. , vol.5 , pp. 1082-1089
    • Sonotaki, S.1
  • 19
    • 84982182081 scopus 로고    scopus 로고
    • Assembly and mechanical properties of the cargo-free and cargo-loaded bacterial nanocompartment encapsulin
    • Snijder, J. et al. Assembly and mechanical properties of the cargo-free and cargo-loaded bacterial nanocompartment encapsulin. Biomacromolecules 17, 2522-2529 (2016).
    • (2016) Biomacromolecules , vol.17 , pp. 2522-2529
    • Snijder, J.1
  • 20
    • 84922021348 scopus 로고    scopus 로고
    • Recombinant expression and purification of 'virus-like' bacterial encapsulin protein cages
    • Rurup, W. F., Cornelissen, J. J. L. M. & Koay, M. S. T. Recombinant expression and purification of 'virus-like' bacterial encapsulin protein cages. Methods Mol. Biol. 1252, 61-67 (2015).
    • (2015) Methods Mol. Biol. , vol.1252 , pp. 61-67
    • Rurup, W.F.1    Cornelissen, J.J.L.M.2    Koay, M.S.T.3
  • 21
    • 84975840807 scopus 로고    scopus 로고
    • Identification of a minimal peptide tag for in vivo and in vitro loading of encapsulin
    • Cassidy-Amstutz, C. et al. Identification of a minimal peptide tag for in vivo and in vitro loading of encapsulin. Biochemistry 55, 3461-3468 (2016).
    • (2016) Biochemistry , vol.55 , pp. 3461-3468
    • Cassidy-Amstutz, C.1
  • 23
    • 84877256074 scopus 로고    scopus 로고
    • Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
    • Avalos, J. L., Fink, G. R. & Stephanopoulos, G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31, 335-341 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 335-341
    • Avalos, J.L.1    Fink, G.R.2    Stephanopoulos, G.3
  • 24
    • 85028611753 scopus 로고    scopus 로고
    • Harnessing yeast organelles for metabolic engineering
    • Hammer, S. K. & Avalos, J. L. Harnessing yeast organelles for metabolic engineering. Nat. Chem. Biol. 13, 823-832 (2017).
    • (2017) Nat. Chem. Biol. , vol.13 , pp. 823-832
    • Hammer, S.K.1    Avalos, J.L.2
  • 25
    • 84962429359 scopus 로고    scopus 로고
    • Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways
    • DeLoache, W. C., Russ, Z. N. & Dueber, J. E. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat. Commun. 7, 11152 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 11152
    • DeLoache, W.C.1    Russ, Z.N.2    Dueber, J.E.3
  • 26
    • 85028920350 scopus 로고    scopus 로고
    • Towards designer organelles by subverting the peroxisomal import pathway
    • Cross, L. L. et al. Towards designer organelles by subverting the peroxisomal import pathway. Nat. Commun. 8, 454 (2017).
    • (2017) Nat. Commun. , vol.8 , pp. 454
    • Cross, L.L.1
  • 27
    • 78349235354 scopus 로고    scopus 로고
    • An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio
    • Kodama, Y. & Hu, C.-D. An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio. Biotechniques 49, 793-805 (2010).
    • (2010) Biotechniques , vol.49 , pp. 793-805
    • Kodama, Y.1    Hu, C.-D.2
  • 28
    • 20444383083 scopus 로고    scopus 로고
    • Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae
    • Vuralhan, Z. et al. Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 71, 3276-3284 (2005).
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 3276-3284
    • Vuralhan, Z.1
  • 30
    • 84931573824 scopus 로고    scopus 로고
    • An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose
    • DeLoache, W. C. et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat. Chem. Biol. 11, 465-471 (2015).
    • (2015) Nat. Chem. Biol. , vol.11 , pp. 465-471
    • DeLoache, W.C.1
  • 32
    • 84924692203 scopus 로고    scopus 로고
    • Microbial engineering for aldehyde synthesis
    • Kunjapur, A. M. & Prather, K. L. J. Microbial engineering for aldehyde synthesis. Appl. Environ. Microbiol. 81, 1892-1901 (2015).
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 1892-1901
    • Kunjapur, A.M.1    Prather, K.L.J.2
  • 33
    • 84906330621 scopus 로고    scopus 로고
    • Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli
    • Kunjapur, A. M., Tarasova, Y. & Prather, K. L. J. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. J. Am. Chem. Soc. 136, 11644-11654 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 11644-11654
    • Kunjapur, A.M.1    Tarasova, Y.2    Prather, K.L.J.3
  • 34
    • 70149113922 scopus 로고    scopus 로고
    • Synthesis of methyl halides from biomass using engineered microbes
    • Bayer, T. S. et al. Synthesis of methyl halides from biomass using engineered microbes. J. Am. Chem. Soc. 131, 6508-6515 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 6508-6515
    • Bayer, T.S.1
  • 35
    • 85041095001 scopus 로고    scopus 로고
    • Retrovirus-like Gag Protein Arc1 binds RNA and traffics across synaptic boutons
    • e11
    • Ashley, J. et al. Retrovirus-like Gag Protein Arc1 binds RNA and traffics across synaptic boutons. Cell 172, 262-274 (2018). e11.
    • (2018) Cell , vol.172 , pp. 262-274
    • Ashley, J.1
  • 36
    • 85041139485 scopus 로고    scopus 로고
    • The neuronal gene arc encodes a repurposed retrotransposon gag protein that mediates intercellular RNA transfer
    • e18
    • Pastuzyn, E. D. et al. The neuronal gene arc encodes a repurposed retrotransposon gag protein that mediates intercellular RNA transfer. Cell 172, 275-288 (2018). e18.
    • (2018) Cell , vol.172 , pp. 275-288
    • Pastuzyn, E.D.1
  • 38
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31-34 (2007).
    • (2007) Nat. Protoc. , vol.2 , pp. 31-34
    • Gietz, R.D.1    Schiestl, R.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.