-
1
-
-
84960561455
-
On computable numbers, with an application to the entscheidungsproblem
-
Turing, A.M., On computable numbers, with an application to the entscheidungsproblem. Proc Lond Math Soc Series 2:42 (1936), 230–265.
-
(1936)
Proc Lond Math Soc
, vol.Series 2
, Issue.42
, pp. 230-265
-
-
Turing, A.M.1
-
2
-
-
84944735469
-
Deep Learning
-
The MIT Press Cambridge MA, London, UK Available at (Accessed 30 May 2017)
-
Goodfellow, I., Bengio, Y., Courville, A., Deep Learning. 2016, The MIT Press, Cambridge MA, London, UK, 96–161 Available at www.deeplearningbook.org. (Accessed 30 May 2017)
-
(2016)
, pp. 96-161
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
3
-
-
84930630277
-
Deep learning
-
Le Cun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
Le Cun, Y.1
Bengio, Y.2
Hinton, G.3
-
4
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural Comput 18 (2006), 1527–1554.
-
(2006)
Neural Comput
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
5
-
-
84864073449
-
Greedy layer-wise training of deep networks. proc
-
Bengio, Y., Lamblin, P., Popovivi, D., Larochelle, H., Greedy layer-wise training of deep networks. proc. Adv Neural Inf Process Syst 19 (2006), 153–160.
-
(2006)
Adv Neural Inf Process Syst
, vol.19
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovivi, D.3
Larochelle, H.4
-
6
-
-
0026410610
-
The diagnostic performance of computer programs for the interpretation of electrocardiograms
-
Willems, J.L., Abreu-Lima, C., Arnaud, P., van Bimmel, J.H., The diagnostic performance of computer programs for the interpretation of electrocardiograms. N Engl J Med 325 (1991), 1767–1773.
-
(1991)
N Engl J Med
, vol.325
, pp. 1767-1773
-
-
Willems, J.L.1
Abreu-Lima, C.2
Arnaud, P.3
van Bimmel, J.H.4
-
7
-
-
0025934806
-
Use of an artificial neural network for the diagnosis of myocardial infarction
-
Baxt, W.G., Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med 115:11 (1991), 843–848.
-
(1991)
Ann Intern Med
, vol.115
, Issue.11
, pp. 843-848
-
-
Baxt, W.G.1
-
8
-
-
0027032927
-
Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery
-
Tu, J.V., Guerriere, M.R., Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery. Proc Annu Symp Comput Appl Med Care, 1992, 666–672.
-
(1992)
Proc Annu Symp Comput Appl Med Care
, pp. 666-672
-
-
Tu, J.V.1
Guerriere, M.R.2
-
9
-
-
84902462761
-
Deep learning of the tissue-regulated splicing code
-
Leung, M.K., Xiong, H.Y., Lee, L.J., Frey, B., Deep learning of the tissue-regulated splicing code. Bioinformatics 30 (2014), i121–i129.
-
(2014)
Bioinformatics
, vol.30
, pp. i121-i129
-
-
Leung, M.K.1
Xiong, H.Y.2
Lee, L.J.3
Frey, B.4
-
10
-
-
84980022857
-
Stegle. Deep learning for computational biology
-
Available at
-
Angermueller, C., Parnamaa, T., Parts, L., Stegle. Deep learning for computational biology. Mol Syst Biol, 12, 2016, 878 Available at https://dx.doi.org/10.15252%2Fmsb.20156651.
-
(2016)
Mol Syst Biol
, vol.12
, pp. 878
-
-
Angermueller, C.1
Parnamaa, T.2
Parts, L.3
-
11
-
-
84925878230
-
Using deep learning to enhance cancer diagnosis and classification
-
JMLR Atlanta, GA
-
th International Conference on Machine Learning, Vol. 28, 2013, JMLR, Atlanta, GA.
-
(2013)
th International Conference on Machine Learning
, vol.28
-
-
Fakoor, R.1
Ladhak, F.2
Nazi, A.3
Huber, M.4
-
12
-
-
84885929616
-
A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
-
K. Mori I. Sakuma Y. Sato C. Barillot N. Navab Springer Berlin, Heidelberg
-
Cruz-Roa, A.A., Arevalo Ovalle, J.E., Madabhushi, A., Gonzales Osorio, F.A., A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N., (eds.) Medical Image Computing and Computer-Assisted Intervention (MICCAI) Lecture Notes in Computer Science, Vol. 8150, 2013, Springer, Berlin, Heidelberg, 403–410.
-
(2013)
Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science
, vol.8150
, pp. 403-410
-
-
Cruz-Roa, A.A.1
Arevalo Ovalle, J.E.2
Madabhushi, A.3
Gonzales Osorio, F.A.4
-
13
-
-
85014442834
-
Deep learning for identifying breast cancer
-
Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.H., Deep learning for identifying breast cancer. Proceedings of the International Society on Biomedical Imaging (ISBI), Quantitative Methods, 2016.
-
(2016)
Proceedings of the International Society on Biomedical Imaging (ISBI), Quantitative Methods
-
-
Wang, D.1
Khosla, A.2
Gargeya, R.3
Irshad, H.4
Beck, A.H.5
-
14
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva, A., Kuprel, B., Novoa, R.A., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–119.
-
(2017)
Nature
, vol.542
, pp. 115-119
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
15
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan, V., Peng, L., Coram, M., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:22 (2016), 2402–2410.
-
(2016)
JAMA
, vol.316
, Issue.22
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
16
-
-
84960419561
-
Care management processes used less often for depression than for other chronic conditions in us primary care practices
-
Bishop, T.F., Ramsay, P.P., Casalino, L.P., Bao, Y., Pincus, H.A., Shortell, S.M., Care management processes used less often for depression than for other chronic conditions in us primary care practices. Health Aff (Millwood) 35:3 (2016), 394–400.
-
(2016)
Health Aff (Millwood)
, vol.35
, Issue.3
, pp. 394-400
-
-
Bishop, T.F.1
Ramsay, P.P.2
Casalino, L.P.3
Bao, Y.4
Pincus, H.A.5
Shortell, S.M.6
-
17
-
-
85016980085
-
Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor mri measures in individuals with major depressive disorder
-
Available at
-
Schnyer, D.M., Clasen, P.C., Gonzalez, C., Beevers, C.G., Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor mri measures in individuals with major depressive disorder. Psychiatry Res 264 (2017), 1–9 Available at http://dx.doi.org/10.1016/j.pscychresns.2017.03.003.
-
(2017)
Psychiatry Res
, vol.264
, pp. 1-9
-
-
Schnyer, D.M.1
Clasen, P.C.2
Gonzalez, C.3
Beevers, C.G.4
-
18
-
-
84883569291
-
Epidemiology of heart failure
-
Roger, V.L., Epidemiology of heart failure. Circ Res 113 (2013), 646–659.
-
(2013)
Circ Res
, vol.113
, pp. 646-659
-
-
Roger, V.L.1
-
19
-
-
84947466043
-
Machine learning in medicine
-
Deo, R.C., Machine learning in medicine. Circulation 132 (2015), 1920–1930.
-
(2015)
Circulation
, vol.132
, pp. 1920-1930
-
-
Deo, R.C.1
-
20
-
-
84964660319
-
Toward generating domain-specific/personalized problem lists from electronic medical records
-
AAAI Fall Symposium, November; Available at (Accessed 25 June 2017)
-
Tsou, C.-H., Devarakonda, M., Liang, J.J., Toward generating domain-specific/personalized problem lists from electronic medical records. AAAI Fall Symposium, November; Available at https://www.aaai.org/ocs/index.php/FSS/FSS15/paper/viewFile/11733/11479, 2015. (Accessed 25 June 2017)
-
(2015)
-
-
Tsou, C.-H.1
Devarakonda, M.2
Liang, J.J.3
-
21
-
-
85018652748
-
Predicting healthcare trajectories from medical records: a deep learning approach
-
Available at
-
Pham, T., Tran, T., Phung, D., Venkatesh, S., Predicting healthcare trajectories from medical records: a deep learning approach. J Biomed Inform 69 (2017), 218–229 Available at http://doi.org/10.1016/j.jbi.2017.04.001.
-
(2017)
J Biomed Inform
, vol.69
, pp. 218-229
-
-
Pham, T.1
Tran, T.2
Phung, D.3
Venkatesh, S.4
-
22
-
-
0004169381
-
The Soul of a New Machine
-
Little, Brown and Company Boston, MA
-
Kidder T, The Soul of a New Machine. 1981, Little, Brown and Company, Boston, MA.
-
(1981)
-
-
Kidder, T.1
-
23
-
-
84871055775
-
A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systemic analysis for the Global Burden of Disease Study 2010
-
Available at
-
Lim, S.S., Vos, T., Flaxman, A.D., et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systemic analysis for the Global Burden of Disease Study 2010. Lancet 380:9859 (2012), 2224–2260 Available at http://dx.doi.org?10.1016/S0140-6736(12)61766-8.
-
(2012)
Lancet
, vol.380
, Issue.9859
, pp. 2224-2260
-
-
Lim, S.S.1
Vos, T.2
Flaxman, A.D.3
-
24
-
-
84999225503
-
Cell phones and cancer risk
-
May; Available at (Accessed 10 May 2017)
-
NIH National Cancer Institute, Cell phones and cancer risk. May; Available at https://www.cancer.gov/about-cancer/causes-prevention/risk/radiation/cell-phones-fact-sheet, 2016. (Accessed 10 May 2017)
-
(2016)
-
-
NIH National Cancer Institute1
-
25
-
-
51449102596
-
Technology insertion in the defense industry: a primer
-
Available at (Accessed 15 May 2017)
-
Kerr, C.I.V., Phaal, R., Probert, D.R., Technology insertion in the defense industry: a primer. Proc Inst Mech Eng B J Eng Manuf 222 (2008), 1009–1023 Available at http://journals.sagepub.com. (Accessed 15 May 2017)
-
(2008)
Proc Inst Mech Eng B J Eng Manuf
, vol.222
, pp. 1009-1023
-
-
Kerr, C.I.V.1
Phaal, R.2
Probert, D.R.3
|