-
1
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., and Hinton, G., "Deep learning, " Nature 521(7553), 436-444 (2015).
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
2
-
-
84988830118
-
-
[accessed 13-Aug-2015]
-
http://www.lung.org/lung-disease/lung-cancer/lung-cancer-screening-guidelines/lung-cancer-screening-for-patients.pdf. [accessed 13-Aug-2015].
-
-
-
-
3
-
-
84872565352
-
Computer-aided detection and analysis of pul-monary nodule from ct images: A survey
-
Dhara, A. K., Mukhopadhyay, S., and Khandelwal, N., "Computer-aided detection and analysis of pul-monary nodule from ct images: A survey, " IETE Technical Review 29(4), 265-275 (2012).
-
(2012)
IETE Technical Review
, vol.29
, Issue.4
, pp. 265-275
-
-
Dhara, A.K.1
Mukhopadhyay, S.2
Khandelwal, N.3
-
4
-
-
84943192265
-
Lung nodule classification using deep features in ct images
-
IEEE
-
Kumar, D., Wong, A., and Clausi, D. A., "Lung nodule classification using deep features in ct images, " in [Computer and Robot Vision (CRV), 2015 12th Conference on], 133-138, IEEE (2015).
-
(2015)
Computer and Robot Vision (CRV), 2015 12th Conference on
, pp. 133-138
-
-
Kumar, D.1
Wong, A.2
Clausi, D.A.3
-
5
-
-
84943812643
-
Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans
-
IEEE
-
van Ginneken, B., Setio, A. A., Jacobs, C., and Ciompi, F., "Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans, " in [Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on], 286-289, IEEE (2015).
-
(2015)
Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on
, pp. 286-289
-
-
Van Ginneken, B.1
Setio, A.A.2
Jacobs, C.3
Ciompi, F.4
-
6
-
-
84887826679
-
Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor
-
Choi, W.-J. and Choi, T.-S., "Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor, " Computer methods and programs in biomedicine 113(1), 37-54 (2014).
-
(2014)
Computer Methods and Programs in Biomedicine
, vol.113
, Issue.1
, pp. 37-54
-
-
Choi, W.-J.1
Choi, T.-S.2
-
7
-
-
84909644435
-
A new 2.5 d representation for lymph node detection using random sets of deep convolutional neural network observations
-
Springer International Publishing
-
Roth, H. R., Lu, L., Seff, A., Cherry, K. M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., and Summers, R. M., "A new 2.5 d representation for lymph node detection using random sets of deep convolutional neural network observations, " in [Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014], 520-527, Springer International Publishing (2014).
-
(2014)
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014
, pp. 520-527
-
-
Roth, H.R.1
Lu, L.2
Seff, A.3
Cherry, K.M.4
Hoffman, J.5
Wang, S.6
Liu, J.7
Turkbey, E.8
Summers, R.M.9
-
8
-
-
84866657764
-
Slic superpixels compared to state-of-the-art superpixel methods
-
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Susstrunk, S., "Slic superpixels compared to state-of-the-art superpixel methods, " Pattern Analysis and Machine Intelligence, IEEE Transactions on 34(11), 2274-2282 (2012).
-
(2012)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.34
, Issue.11
, pp. 2274-2282
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
Susstrunk, S.6
-
9
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., and Hinton, G. E., "Imagenet classification with deep convolutional neural networks, " in [Advances in neural information processing systems], 1097-1105 (2012).
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
11
-
-
85016148287
-
Guest editorial: Lungx challenge for computerized lung nodule classification: Reections and lessons learned
-
Armato, III, S. G., Hadjiiski, L., Tourassi, G. D., Drukker, K., Giger, M. L., Li, F., Redmond, G., Fara-hani, K., Kirby, J. S., and Clarke, L. P., "Guest editorial: Lungx challenge for computerized lung nodule classification: reections and lessons learned, " Journal of Medical Imaging 2(2), 020103 (2015).
-
(2015)
Journal of Medical Imaging
, vol.2
, Issue.2
, pp. 020103
-
-
Armato, S.G.1
Hadjiiski, L.2
Tourassi, G.D.3
Drukker, K.4
Giger, M.L.5
Li, F.6
Redmond, G.7
Fara-Hani, K.8
Kirby, J.S.9
Clarke, L.P.10
-
13
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., "Dropout: A simple way to prevent neural networks from overfitting, " The Journal of Machine Learning Research 15(1), 1929-1958 (2014).
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
|