메뉴 건너뛰기




Volumn 137, Issue , 2018, Pages 1-10

A machine learning framework to forecast wave conditions

Author keywords

Machine learning; SWAN wave modeling; Wave condition forecasting

Indexed keywords

FORECASTING; LEARNING ALGORITHMS; MEAN SQUARE ERROR; OCEANOGRAPHY; WATER WAVES;

EID: 85043507654     PISSN: 03783839     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.coastaleng.2018.03.004     Document Type: Article
Times cited : (286)

References (44)
  • 1
    • 84925604888 scopus 로고    scopus 로고
    • No unbiased estimator of the variance of k-fold cross-validation
    • Bengio, Y., Grandvalet, Y., No unbiased estimator of the variance of k-fold cross-validation. J. Mach. Learn. Res. 5 (2004), 1089–1105.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1089-1105
    • Bengio, Y.1    Grandvalet, Y.2
  • 2
    • 0036552804 scopus 로고    scopus 로고
    • Intercomparison of the performance of operational ocean wave forecasting systems with buoy data
    • Bidlot, J.-R., Holmes, D.J., Wittmann, P.A., Lalbeharry, R., Chen, H.S., Intercomparison of the performance of operational ocean wave forecasting systems with buoy data. Weather Forecast. 17 (2002), 287–310.
    • (2002) Weather Forecast. , vol.17 , pp. 287-310
    • Bidlot, J.-R.1    Holmes, D.J.2    Wittmann, P.A.3    Lalbeharry, R.4    Chen, H.S.5
  • 3
    • 37549017766 scopus 로고    scopus 로고
    • Real-time production optimization of oil and gas production systems: A technology survey
    • Bieker, H.P., Slupphaug, O., Johansen, T.A., Real-time production optimization of oil and gas production systems: A technology survey. SPE Prod. Oper. 22 (2007), 382–391.
    • (2007) SPE Prod. Oper. , vol.22 , pp. 382-391
    • Bieker, H.P.1    Slupphaug, O.2    Johansen, T.A.3
  • 4
    • 0016518731 scopus 로고
    • The construction and implementation of metamodels
    • Blanning, R.W., The construction and implementation of metamodels. Simulation 24 (1975), 177–184.
    • (1975) Simulation , vol.24 , pp. 177-184
    • Blanning, R.W.1
  • 6
    • 34247282207 scopus 로고    scopus 로고
    • Near-shore swell estimation from a global wind-wave model: Spectral process, linear, and artificial neural network models
    • Browne, M., Castelle, B., Strauss, D., Tomlinson, R., Blumenstein, M., Lane, C., Near-shore swell estimation from a global wind-wave model: Spectral process, linear, and artificial neural network models. Coast Eng. 54 (2007), 445–460.
    • (2007) Coast Eng. , vol.54 , pp. 445-460
    • Browne, M.1    Castelle, B.2    Strauss, D.3    Tomlinson, R.4    Blumenstein, M.5    Lane, C.6
  • 8
    • 4544304381 scopus 로고    scopus 로고
    • On the generalization ability of on-line learning algorithms
    • Cesa-Bianchi, N., Conconi, A., Gentile, C., On the generalization ability of on-line learning algorithms. IEEE Trans. Inf. Theor. 50 (2004), 2050–2057.
    • (2004) IEEE Trans. Inf. Theor. , vol.50 , pp. 2050-2057
    • Cesa-Bianchi, N.1    Conconi, A.2    Gentile, C.3
  • 9
    • 84951123728 scopus 로고    scopus 로고
    • Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions
    • Chang, G., Ruehl, K., Jones, C., Roberts, J.D., Chartrand, C.C., Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions. Renew. Energy 89 (2016), 636–648.
    • (2016) Renew. Energy , vol.89 , pp. 636-648
    • Chang, G.1    Ruehl, K.2    Jones, C.3    Roberts, J.D.4    Chartrand, C.C.5
  • 10
    • 85016549448 scopus 로고    scopus 로고
    • Enabling large-scale viscoelastic calculations via neural network acceleration
    • DeVries, P.M., Thompson, T.B., Meade, B.J., Enabling large-scale viscoelastic calculations via neural network acceleration. Geophys. Res. Lett. 44 (2017), 2662–2669.
    • (2017) Geophys. Res. Lett. , vol.44 , pp. 2662-2669
    • DeVries, P.M.1    Thompson, T.B.2    Meade, B.J.3
  • 11
    • 0031394595 scopus 로고    scopus 로고
    • A TOPEX/POSEIDON global tidal model (TPXO.2) and barotropic tidal currents determined from long-range acoustic transmissions
    • Dushaw, B.D., Egbert, G.D., Worcester, P.F., Cornuelle, B.D., Howe, B.M., Metzger, K., A TOPEX/POSEIDON global tidal model (TPXO.2) and barotropic tidal currents determined from long-range acoustic transmissions. Prog. Oceanogr. 40 (1997), 337–367.
    • (1997) Prog. Oceanogr. , vol.40 , pp. 337-367
    • Dushaw, B.D.1    Egbert, G.D.2    Worcester, P.F.3    Cornuelle, B.D.4    Howe, B.M.5    Metzger, K.6
  • 12
    • 84858759909 scopus 로고    scopus 로고
    • Mapping and Assessment of the United States Ocean Wave Energy Resource
    • Technical Report 1024637, Palo Alto, CA
    • EPRI, Mapping and Assessment of the United States Ocean Wave Energy Resource. Technical Report 1024637, Palo Alto, CA, 2011.
    • (2011)
    • EPRI1
  • 13
    • 71549124103 scopus 로고    scopus 로고
    • Comparison between M5’ model tree and neural networks for prediction of significant wave height in Lake Superior
    • Etemad-Shahidi, A., Mahjoobi, J., Comparison between M5’ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Eng. 36 (2009), 1175–1181.
    • (2009) Ocean Eng. , vol.36 , pp. 1175-1181
    • Etemad-Shahidi, A.1    Mahjoobi, J.2
  • 14
    • 33845344543 scopus 로고    scopus 로고
    • The State of the World Fisheries and Aquaculture 2016. Contributing to the Food Security and Nutrition for All
    • Technical Report Food and Agriculture Organization of the United Nations
    • FAO, The State of the World Fisheries and Aquaculture 2016. Contributing to the Food Security and Nutrition for All. Technical Report, 2016, Food and Agriculture Organization of the United Nations.
    • (2016)
    • FAO1
  • 16
    • 85043523929 scopus 로고    scopus 로고
    • Development of a wave energy resource classification system
    • Haas, K., Ahn, S., Neary, V.S., Bredin, S., Development of a wave energy resource classification system. Waterpower Week, 2017, 1–5.
    • (2017) Waterpower Week , pp. 1-5
    • Haas, K.1    Ahn, S.2    Neary, V.S.3    Bredin, S.4
  • 17
    • 0001115236 scopus 로고    scopus 로고
    • The Naval Research Laboratory's coupled ocean/atmosphere mesoscale prediction system (COAMPS)
    • Hodur, R.M., The Naval Research Laboratory's coupled ocean/atmosphere mesoscale prediction system (COAMPS). Mon. Weather Rev. 125 (1997), 1414–1430.
    • (1997) Mon. Weather Rev. , vol.125 , pp. 1414-1430
    • Hodur, R.M.1
  • 18
    • 85166878112 scopus 로고    scopus 로고
    • Central and Northern California Ocean Observing System
    • CeNCOOS
    • Integrated Ocean Observing System, Central and Northern California Ocean Observing System. 2017, CeNCOOS.
    • (2017)
    • Integrated Ocean Observing System1
  • 19
    • 84941620184 scopus 로고    scopus 로고
    • Adam: A Method for Stochastic Optimization
    • arXiv preprint arXiv:1412.6980
    • Kingma, D.P., Ba, J., Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980, 2014.
    • (2014)
    • Kingma, D.P.1    Ba, J.2
  • 20
    • 51649116012 scopus 로고    scopus 로고
    • Kriging metamodeling in simulation: A review
    • Kleijnen, J.P., Kriging metamodeling in simulation: A review. Eur. J. Oper. Res. 192 (2009), 707–716.
    • (2009) Eur. J. Oper. Res. , vol.192 , pp. 707-716
    • Kleijnen, J.P.1
  • 21
    • 0003250435 scopus 로고
    • Single-layer learning revisited: A stepwise procedure for building and training a neural network
    • Knerr, S., Personnaz, L., Dreyfus, G., Single-layer learning revisited: A stepwise procedure for building and training a neural network. Neurocomp. NATO ASI Ser. (Ser. F: Comp. Syst. Sci.) 68 (1990), 41–50.
    • (1990) Neurocomp. NATO ASI Ser. (Ser. F: Comp. Syst. Sci.) , vol.68 , pp. 41-50
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 22
    • 0003828908 scopus 로고    scopus 로고
    • Dynamics and Modelling of Ocean Waves
    • Cambridge University Press
    • Komen, G.J., Cavaleri, L., Donelan, M., Dynamics and Modelling of Ocean Waves. 1996, Cambridge University Press.
    • (1996)
    • Komen, G.J.1    Cavaleri, L.2    Donelan, M.3
  • 24
    • 59949083332 scopus 로고    scopus 로고
    • An alternative approach for the prediction of significant wave heights based on classification and regression trees
    • Mahjoobi, J., Etemad-Shahidi, A., An alternative approach for the prediction of significant wave heights based on classification and regression trees. Appl. Ocean Res. 30 (2008), 172–177.
    • (2008) Appl. Ocean Res. , vol.30 , pp. 172-177
    • Mahjoobi, J.1    Etemad-Shahidi, A.2
  • 25
    • 1842843640 scopus 로고    scopus 로고
    • Improving wave predictions with artificial neural networks
    • Makarynskyy, O., Improving wave predictions with artificial neural networks. Ocean Eng. 31 (2004), 709–724.
    • (2004) Ocean Eng. , vol.31 , pp. 709-724
    • Makarynskyy, O.1
  • 27
    • 33748323618 scopus 로고
    • Theory and Applications of Ocean Surface Waves: Part 1: Linear Aspects. Part 2: Nonlinear Aspects
    • World Scientific
    • Mei, C.C., Stiassnie, M., Yue, D.K.-P., Theory and Applications of Ocean Surface Waves: Part 1: Linear Aspects. Part 2: Nonlinear Aspects. 1989, World Scientific.
    • (1989)
    • Mei, C.C.1    Stiassnie, M.2    Yue, D.K.-P.3
  • 30
    • 85043528733 scopus 로고    scopus 로고
    • Annual Report: Ocean Energy Systems 2016
    • Technical Report 1024637
    • Ocean Energy Systems, Annual Report: Ocean Energy Systems 2016. Technical Report 1024637, 2016.
    • (2016)
    • Ocean Energy Systems1
  • 31
    • 85043504247 scopus 로고    scopus 로고
    • An integrated framework that combines machine learning and numerical models to improve wave-condition forecasts
    • O'Donncha, F., Zhang, Y., James, S.C., An integrated framework that combines machine learning and numerical models to improve wave-condition forecasts. J. Mar. Syst., 2018.
    • (2018) J. Mar. Syst.
    • O'Donncha, F.1    Zhang, Y.2    James, S.C.3
  • 32
    • 33745699573 scopus 로고    scopus 로고
    • Bayesian analysis of computer code outputs: A tutorial
    • O'Hagan, A., Bayesian analysis of computer code outputs: A tutorial. Reliab. Eng. Syst. Saf. 91 (2006), 1290–1300.
    • (2006) Reliab. Eng. Syst. Saf. , vol.91 , pp. 1290-1300
    • O'Hagan, A.1
  • 33
    • 84977273963 scopus 로고    scopus 로고
    • The California coastal wave monitoring and prediction system
    • O'Reilly, W., Olfe, C.B., Thomas, J., Seymour, R., Guza, R., The California coastal wave monitoring and prediction system. Coast Eng. 116 (2016), 118–132.
    • (2016) Coast Eng. , vol.116 , pp. 118-132
    • O'Reilly, W.1    Olfe, C.B.2    Thomas, J.3    Seymour, R.4    Guza, R.5
  • 34
    • 84873579179 scopus 로고    scopus 로고
    • Addressing Ocean and Coastal Issues at the West Coast Scale through Regional Ocean Observing System Collaboration
    • MTS/IEEE OCEANS'12
    • Patterson, J., Thomas, J., Rosenfeld, L., Newton, J., Hazard, L., Scianna, J., Kudela, R., Mayorga, E., Cohen, C., Cook, M., et al. Addressing Ocean and Coastal Issues at the West Coast Scale through Regional Ocean Observing System Collaboration. MTS/IEEE OCEANS'12, 2012, 1–8.
    • (2012) , pp. 1-8
    • Patterson, J.1    Thomas, J.2    Rosenfeld, L.3    Newton, J.4    Hazard, L.5    Scianna, J.6    Kudela, R.7    Mayorga, E.8    Cohen, C.9    Cook, M.10
  • 36
    • 84941066424 scopus 로고    scopus 로고
    • Significant wave height record extension by neural networks and reanalysis wind data
    • Peres, D., Iuppa, C., Cavallaro, L., Cancelliere, A., Foti, E., Significant wave height record extension by neural networks and reanalysis wind data. Ocean Model. 94 (2015), 128–140.
    • (2015) Ocean Model. , vol.94 , pp. 128-140
    • Peres, D.1    Iuppa, C.2    Cavallaro, L.3    Cancelliere, A.4    Foti, E.5
  • 37
    • 84864535862 scopus 로고    scopus 로고
    • Review of surrogate modeling in water resources
    • W07401
    • Razavi, S., Tolson, B.A., Burn, D.H., Review of surrogate modeling in water resources. Water Resour. Res., 48, 2012 W07401.
    • (2012) Water Resour. Res. , vol.48
    • Razavi, S.1    Tolson, B.A.2    Burn, D.H.3
  • 38
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J., Deep learning in neural networks: an overview. Neural Network. 61 (2015), 85–117.
    • (2015) Neural Network. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 40
    • 0000364253 scopus 로고
    • A semi-implicit ocean circulation model using a generalized topography-following coordinate system
    • Song, Y., Haidvogel, D., A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys. 115 (1994), 228–244.
    • (1994) J. Comput. Phys. , vol.115 , pp. 228-244
    • Song, Y.1    Haidvogel, D.2
  • 41
    • 84855816944 scopus 로고    scopus 로고
    • SWAN Scientific and Technical Documentation
    • Technical Report SWAN Cycle III version 40.51 Delft University of Technology
    • The SWAN Team, SWAN Scientific and Technical Documentation. Technical Report SWAN Cycle III version 40.51, 2006, Delft University of Technology.
    • (2006)
    • The SWAN Team1
  • 42
    • 85043492139 scopus 로고    scopus 로고
    • The Weather Company
    • The Weather Company, 2017, The Weather Company.
    • (2017) The Weather Company
  • 43
    • 78349303981 scopus 로고    scopus 로고
    • TM version 3.14, Technical note
    • TM version 3.14, Technical note. MMAB Contrib., 276, 2009, 220.
    • (2009) MMAB Contrib. , vol.276 , pp. 220
    • Tolman, H.L.1
  • 44
    • 85043501241 scopus 로고    scopus 로고
    • Energy Department Announces Investment in Wave Energy Test Facility
    • US DOE, Energy Department Announces Investment in Wave Energy Test Facility. 2016.
    • (2016)
    • US DOE1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.