메뉴 건너뛰기




Volumn 28, Issue 3, 2018, Pages 807-811

Skeleton Optical Spectra-Based Action Recognition Using Convolutional Neural Networks

Author keywords

Action recognition; convolutional neural network (ConvNet); skeleton

Indexed keywords

CONVOLUTION; ENCODING (SYMBOLS); NEURAL NETWORKS;

EID: 85042922293     PISSN: 10518215     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCSVT.2016.2628339     Document Type: Article
Times cited : (288)

References (26)
  • 1
    • 80052878786 scopus 로고    scopus 로고
    • Real-time human pose recognition in parts from single depth images
    • Jun.
    • J. Shotton et al., "Real-time human pose recognition in parts from single depth images," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2011, pp. 1297-1304.
    • (2011) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 1297-1304
    • Shotton, J.1
  • 5
    • 84898773205 scopus 로고    scopus 로고
    • The moving pose: An efficient 3D kinematics descriptor for low-latency action recognition and detection
    • Dec.
    • M. Zanfir, M. Leordeanu, and C. Sminchisescu, "The moving pose: An efficient 3D kinematics descriptor for low-latency action recognition and detection," in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 2752-2759.
    • (2013) Proc. IEEE Int. Conf. Comput. Vis. , pp. 2752-2759
    • Zanfir, M.1    Leordeanu, M.2    Sminchisescu, C.3
  • 6
    • 84887309601 scopus 로고    scopus 로고
    • A new descriptor for multiple 3D motion trajectories recognition
    • May
    • Z. Shao and Y. F. Li, "A new descriptor for multiple 3D motion trajectories recognition," in Proc. IEEE Int. Conf. Robot. Autom., May 2013, pp. 4749-4754.
    • (2013) Proc. IEEE Int. Conf. Robot. Autom. , pp. 4749-4754
    • Shao, Z.1    Li, Y.F.2
  • 7
    • 84896063976 scopus 로고    scopus 로고
    • Histogram of oriented displacements (HOD): Describing trajectories of human joints for action recognition
    • Aug.
    • M. A. Gowayyed, M. Torki, M. E. Hussein, and M. El-Saban, "Histogram of oriented displacements (HOD): Describing trajectories of human joints for action recognition," in Proc. Int. Joint Conf. Artif. Intell., Aug. 2013, pp. 1351-1357.
    • (2013) Proc. Int. Joint Conf. Artif. Intell. , pp. 1351-1357
    • Gowayyed, M.A.1    Torki, M.2    Hussein, M.E.3    El-Saban, M.4
  • 9
    • 84891625198 scopus 로고    scopus 로고
    • Sequence of the most informative joints (SMIJ): A new representation for human skeletal action recognition
    • F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, "Sequence of the most informative joints (SMIJ): A new representation for human skeletal action recognition," J. Vis. Commun. Image Represent., vol. 25, no. 1, pp. 24-38, 2014.
    • (2014) J. Vis. Commun. Image Represent. , vol.25 , Issue.1 , pp. 24-38
    • Ofli, F.1    Chaudhry, R.2    Kurillo, G.3    Vidal, R.4    Bajcsy, R.5
  • 12
    • 84963976003 scopus 로고    scopus 로고
    • R3DG features: Relative 3D geometry-based skeletal representations for human action recognition
    • Nov.
    • R. Vemulapalli, F. Arrate, and R. Chellappa, "R3DG features: Relative 3D geometry-based skeletal representations for human action recognition," Comput. Vis. Image Understand., vol. 152, pp. 155-166, Nov. 2016.
    • (2016) Comput. Vis. Image Understand. , vol.152 , pp. 155-166
    • Vemulapalli, R.1    Arrate, F.2    Chellappa, R.3
  • 14
    • 84962878607 scopus 로고    scopus 로고
    • Convnets-based action recognition from depth maps through virtual cameras and pseudocoloring
    • Oct.
    • P. Wang, W. Li, Z. Gao, C. Tang, J. Zhang, and P. O. Ogunbona, "Convnets-based action recognition from depth maps through virtual cameras and pseudocoloring," in Proc. ACM Int. Conf. Multimedia, Oct. 2015, pp. 1119-1122.
    • (2015) Proc. ACM Int. Conf. Multimedia , pp. 1119-1122
    • Wang, P.1    Li, W.2    Gao, Z.3    Tang, C.4    Zhang, J.5    Ogunbona, P.O.6
  • 15
    • 84949997012 scopus 로고    scopus 로고
    • Action recognition from depth maps using deep convolutional neural networks
    • Aug.
    • P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang, and P. O. Ogunbona, "Action recognition from depth maps using deep convolutional neural networks," IEEE Trans. Human-Mach. Syst., vol. 46, no. 4, pp. 498-509, Aug. 2016.
    • (2016) IEEE Trans. Human-Mach. Syst. , vol.46 , Issue.4 , pp. 498-509
    • Wang, P.1    Li, W.2    Gao, Z.3    Zhang, J.4    Tang, C.5    Ogunbona, P.O.6
  • 16
    • 84959217041 scopus 로고    scopus 로고
    • Hierarchical recurrent neural network for skeleton based action recognition
    • Jun.
    • Y. Du, W. Wang, and L. Wang, "Hierarchical recurrent neural network for skeleton based action recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1110-1118.
    • (2015) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 1110-1118
    • Du, Y.1    Wang, W.2    Wang, L.3
  • 17
    • 84973920651 scopus 로고    scopus 로고
    • Differential recurrent neural networks for action recognition
    • Dec.
    • V. Veeriah, N. Zhuang, and G.-J. Qi, "Differential recurrent neural networks for action recognition," in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 4041-4049.
    • (2015) Proc. IEEE Int. Conf. Comput. Vis. , pp. 4041-4049
    • Veeriah, V.1    Zhuang, N.2    Qi, G.-J.3
  • 21
    • 84956626439 scopus 로고    scopus 로고
    • UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor
    • Sep.
    • C. Chen, R. Jafari, and N. Kehtarnavaz, "UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor," in Proc. IEEE Int. Conf. Image Process., Sep. 2015, pp. 168-172.
    • (2015) Proc. IEEE Int. Conf. Image Process. , pp. 168-172
    • Chen, C.1    Jafari, R.2    Kehtarnavaz, N.3
  • 22
    • 84994894914 scopus 로고    scopus 로고
    • RGB-D-based action recognition datasets: A survey
    • Dec.
    • J. Zhang, W. Li, P. O. Ogunbona, P. Wang, and C. Tang, "RGB-D-based action recognition datasets: A survey," Pattern Recognit., vol. 60, pp. 86-105, Dec. 2016.
    • (2016) Pattern Recognit. , vol.60 , pp. 86-105
    • Zhang, J.1    Li, W.2    Ogunbona, P.O.3    Wang, P.4    Tang, C.5
  • 23
    • 84919911819 scopus 로고    scopus 로고
    • A hierarchical model based on latent Dirichlet allocation for action recognition
    • Aug.
    • S. Yang, C. Yuan, W. Hu, and X. Ding, "A hierarchical model based on latent Dirichlet allocation for action recognition," in Proc. 22nd Int. Conf. Pattern Recognit., Aug. 2014, pp. 2613-2618.
    • (2014) Proc. 22nd Int. Conf. Pattern Recognit. , pp. 2613-2618
    • Yang, S.1    Yuan, C.2    Hu, W.3    Ding, X.4
  • 25
    • 84896061825 scopus 로고    scopus 로고
    • Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations
    • Aug.
    • M. E. Hussein, M. Torki, M. A. Gowayyed, and M. El-Saban, "Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations," in Proc. Int. Joint Conf. Artif. Intell., Aug. 2013, pp. 2466-2472.
    • (2013) Proc. Int. Joint Conf. Artif. Intell. , pp. 2466-2472
    • Hussein, M.E.1    Torki, M.2    Gowayyed, M.A.3    El-Saban, M.4
  • 26
    • 84951985479 scopus 로고    scopus 로고
    • A generative restricted Boltzmann machine based method for high-dimensional motion data modeling
    • Jul.
    • S. Nie, Z. Wang, and Q. Ji, "A generative restricted Boltzmann machine based method for high-dimensional motion data modeling," Comput. Vis. Image Understand., vol. 136, pp. 14-22, Jul. 2015.
    • (2015) Comput. Vis. Image Understand. , vol.136 , pp. 14-22
    • Nie, S.1    Wang, Z.2    Ji, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.