메뉴 건너뛰기




Volumn 1745, Issue , 2018, Pages 25-46

Integrating analysis of cellular heterogeneity in high-content dose-response studies

Author keywords

Cellular heterogeneity; Drug discovery; High content screening; Phenotypic profiling; Systems biology

Indexed keywords

BIOLOGICAL MARKER;

EID: 85042556250     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-4939-7680-5_2     Document Type: Chapter
Times cited : (1)

References (25)
  • 1
    • 77956925998 scopus 로고    scopus 로고
    • Messy biology and the origins of evolutionary innovations
    • Tawfik DS (2010) Messy biology and the origins of evolutionary innovations. Nat Chem Biol 6(10):692–696. https://doi.org/10.1038/nchembio.441
    • (2010) Nat Chem Biol , vol.6 , Issue.10 , pp. 692-696
    • Tawfik, D.S.1
  • 3
    • 70450162700 scopus 로고    scopus 로고
    • Non-genetic heterogeneity of cells in development: More than just noise
    • Huang S (2009) Non-genetic heterogeneity of cells in development: more than just noise. Development 136(23):3853–3862. https://doi.org/10.1242/dev.035139
    • (2009) Development , vol.136 , Issue.23 , pp. 3853-3862
    • Huang, S.1
  • 4
    • 78951470515 scopus 로고    scopus 로고
    • Origins of regulated cell-to-cell variability
    • Snijder B, Pelkmans L (2011) Origins of regulated cell-to-cell variability. Nat Rev Mol Cell Biol 12(2):119–125. https://doi.org/10.1038/nrm3044
    • (2011) Nat Rev Mol Cell Biol , vol.12 , Issue.2 , pp. 119-125
    • Snijder, B.1    Pelkmans, L.2
  • 5
    • 77952474987 scopus 로고    scopus 로고
    • Cellular heterogeneity: When do differences make a difference?
    • Altschuler SJ, Wu LF (2010) Cellular heterogeneity: when do differences make a difference? Cell 141(4):559–563
    • (2010) Cell , vol.141 , Issue.4 , pp. 559-563
    • Altschuler, S.J.1    Wu, L.F.2
  • 6
    • 77952257945 scopus 로고    scopus 로고
    • Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities
    • Singh DK, Ku CJ, Wichaidit C, Steininger RJ 3rd, Wu LF, Altschuler SJ (2010) Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Mol Syst Biol 6:369
    • (2010) Mol Syst Biol , vol.6 , pp. 369
    • Singh, D.K.1    Ku, C.J.2    Wichaidit, C.3    Steininger, R.J.4    Wu, L.F.5    Altschuler, S.J.6
  • 8
    • 48449098623 scopus 로고    scopus 로고
    • Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs
    • Gascoigne KE, Taylor SS (2008) Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14(2):111–122. https://doi.org/10.1016/j.ccr.2008.07.002
    • (2008) Cancer Cell , vol.14 , Issue.2 , pp. 111-122
    • Gascoigne, K.E.1    Taylor, S.S.2
  • 10
    • 70549093092 scopus 로고    scopus 로고
    • Non-genetic cell-to-cell variability and the consequences for pharmacology
    • Niepel M, Spencer SL, Sorger PK (2009) Non-genetic cell-to-cell variability and the consequences for pharmacology. Curr Opin Chem Biol 13(5–6):556–561. https://doi.org/10.1016/j.cbpa.2009.09.015
    • (2009) Curr Opin Chem Biol , vol.13 , Issue.56 , pp. 556-561
    • Niepel, M.1    Spencer, S.L.2    Sorger, P.K.3
  • 11
    • 84896727479 scopus 로고    scopus 로고
    • Addressing genetic tumor heterogeneity through computationally predictive combination therapy
    • Zhao B, Pritchard JR, Lauffenburger DA, Hemann MT (2014) Addressing genetic tumor heterogeneity through computationally predictive combination therapy. Cancer Discov 4(2):166–174. https://doi.org/10.1158/2159-8290.CD-13-0465
    • (2014) Cancer Discov , vol.4 , Issue.2 , pp. 166-174
    • Zhao, B.1    Pritchard, J.R.2    Lauffenburger, D.A.3    Hemann, M.T.4
  • 13
    • 0033003760 scopus 로고    scopus 로고
    • A simple statistical parameter for use in evaluation and validation of high throughput screening assays
    • Zhang J-H, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2): 67–73. https://doi.org/10.1177/108705719900400206
    • (1999) J Biomol Screen , vol.4 , Issue.2 , pp. 67-73
    • Zhang, J.-H.1    Chung, T.D.Y.2    Oldenburg, K.R.3
  • 18
    • 84902160477 scopus 로고    scopus 로고
    • Rapid assessment and visualization of normality in high-content and other cell-level data and its impact on the interpretation of experimental results
    • Haney SA (2014) Rapid assessment and visualization of normality in high-content and other cell-level data and its impact on the interpretation of experimental results. J Biomol Screen. https://doi.org/10.1177/1087057114526432
    • (2014) J Biomol Screen
    • Haney, S.A.1
  • 19
    • 70349613624 scopus 로고    scopus 로고
    • An approach for extensibly profiling the molecular states of cellular subpopulations
    • Loo LH, Lin HJ, Steininger RJ 3rd, Wang Y, Wu LF, Altschuler SJ (2009) An approach for extensibly profiling the molecular states of cellular subpopulations. Nat Methods 6(10):759–765
    • (2009) Nat Methods , vol.6 , Issue.10 , pp. 759-765
    • Loo, L.H.1    Lin, H.J.2    Steininger, R.J.3    Wang, Y.4    Wu, L.F.5    Altschuler, S.J.6
  • 20
    • 84937690594 scopus 로고    scopus 로고
    • Distribution Analyzer, a methodology for identifying and clustering outlier conditions from single-cell distributions, and its application to a Nanog reporter RNAi screen
    • Gingold JA, Coakley ES, Su J, Lee DF, Lau Z, Zhou H, Felsenfeld DP, Schaniel C, Lemischka IR (2015) Distribution Analyzer, a methodology for identifying and clustering outlier conditions from single-cell distributions, and its application to a Nanog reporter RNAi screen. BMC Bioinformatics 16:225. https://doi.org/10.1186/s12859-015-0636-7
    • (2015) BMC Bioinformatics , vol.16 , pp. 225
    • Gingold, J.A.1    Coakley, E.S.2    Su, J.3    Lee, D.F.4    Lau, Z.5    Zhou, H.6    Felsenfeld, D.P.7    Schaniel, C.8    Lemischka, I.R.9
  • 22
    • 84958162477 scopus 로고    scopus 로고
    • A metric and workflow for quality control in the analysis of heterogeneity in phenotypic profiles and screens
    • Gough A, Shun TY, Lansing Taylor D, Schurdak M (2016) A metric and workflow for quality control in the analysis of heterogeneity in phenotypic profiles and screens. Methods 96:12–26. https://doi.org/10.1016/j.ymeth.2015.10.007
    • (2016) Methods , vol.96 , pp. 12-26
    • Gough, A.1    Shun, T.Y.2    Lansing Taylor, D.3    Schurdak, M.4
  • 23
    • 0017690690 scopus 로고
    • Proof without prejudice: Use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources
    • Young IT (1977) Proof without prejudice: use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources. J Histochem Cytochem 25(7): 935–941
    • (1977) J Histochem Cytochem , vol.25 , Issue.7 , pp. 935-941
    • Young, I.T.1
  • 24
    • 84898033361 scopus 로고    scopus 로고
    • Tumor heterogeneity confounds and illuminates: A case for Darwinian tumor evolution
    • Polyak K (2014) Tumor heterogeneity confounds and illuminates: a case for Darwinian tumor evolution. Nat Med 20(4):344–346. https://doi.org/10.1038/nm.3518
    • (2014) Nat Med , vol.20 , Issue.4 , pp. 344-346
    • Polyak, K.1
  • 25
    • 84898042173 scopus 로고    scopus 로고
    • Tumor heterogeneity confounds and illuminates: Assessing the implications
    • Kleppe M, Levine RL (2014) Tumor heterogeneity confounds and illuminates: assessing the implications. Nat Med 20(4):342–344. https://doi.org/10.1038/nm.3522
    • (2014) Nat Med , vol.20 , Issue.4 , pp. 342-344
    • Kleppe, M.1    Levine, R.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.