메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 736-744

Complex Event Detection by Identifying Reliable Shots from Untrimmed Videos

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SCIENCE; COMPUTERS; ELECTRICAL ENGINEERING;

EID: 85041919486     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.86     Document Type: Conference Paper
Times cited : (54)

References (37)
  • 1
    • 85041927807 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • S. A. AndIoannis Tsochantaridis and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, 2002
    • (2002) NIPS
    • Ioannis, T.S.A.1    Hofmann, T.2
  • 2
    • 52649179384 scopus 로고    scopus 로고
    • Multiple instance learning for sparse positive bags
    • R. C. Bunescu and R. J. Mooney. Multiple instance learning for sparse positive bags. In ICML, 2007
    • (2007) ICML
    • Bunescu, R.C.1    Mooney, R.J.2
  • 4
    • 84911390560 scopus 로고    scopus 로고
    • Temporal sequence modeling for video event detection
    • Y. Cheng, Q. Fan, S. Pankanti, and A. N. Choudhary. Temporal sequence modeling for video event detection. In CVPR, 2014
    • (2014) CVPR
    • Cheng, Y.1    Fan, Q.2    Pankanti, S.3    Choudhary, A.N.4
  • 6
    • 84962389624 scopus 로고    scopus 로고
    • Videostory: A new multimedia embedding for few-example recognition and translation of events
    • A. Habibian, T. Mensink, and C. G. M. Snoek. Videostory: A new multimedia embedding for few-example recognition and translation of events. In ACM MM, 2014
    • (2014) ACM MM
    • Habibian, A.1    Mensink, T.2    Snoek, C.G.M.3
  • 9
    • 79959766559 scopus 로고    scopus 로고
    • Consumer video understanding: A benchmark database and an evaluation of human and machine performance
    • Y. Jiang, G. Ye, S. Chang, D. P. W. Ellis, and A. C. Loui. Consumer video understanding: A benchmark database and an evaluation of human and machine performance. In ICMR, 2011
    • (2011) ICMR
    • Jiang, Y.1    Ye, G.2    Chang, S.3    Ellis, D.P.W.4    Loui, A.C.5
  • 11
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS, 2010
    • (2010) NIPS
    • Kumar, M.P.1    Packer, B.2    Koller, D.3
  • 12
    • 84959216691 scopus 로고    scopus 로고
    • Recognizing complex events in videos by learning key static-dynamic evidences
    • K. Lai, D. Liu, M. Chen, and S. Chang. Recognizing complex events in videos by learning key static-dynamic evidences. In ECCV, 2014
    • (2014) ECCV
    • Lai, K.1    Liu, D.2    Chen, M.3    Chang, S.4
  • 13
    • 84911413388 scopus 로고    scopus 로고
    • Video event detection by inferring temporal instance labels
    • K. Lai, F. X. Yu, M. Chen, and S. Chang. Video event detection by inferring temporal instance labels. In CVPR, 2014
    • (2014) CVPR
    • Lai, K.1    Yu, F.X.2    Chen, M.3    Chang, S.4
  • 14
    • 84959241532 scopus 로고    scopus 로고
    • Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition
    • Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition. In CVPR, 2015
    • (2015) CVPR
    • Lan, Z.1    Lin, M.2    Li, X.3    Hauptmann, A.G.4    Raj, B.5
  • 15
    • 84863053519 scopus 로고    scopus 로고
    • Text-based image retrieval using progressive multi-instance learning
    • W. Li, L. Duan, D. Xu, and I. W. Tsang. Text-based image retrieval using progressive multi-instance learning. In ICCV, 2011
    • (2011) ICCV
    • Li, W.1    Duan, L.2    Xu, D.3    Tsang, I.W.4
  • 16
    • 84959247149 scopus 로고    scopus 로고
    • Multiple instance learning for soft bags via top instances
    • W. Li and N. Vasconcelos. Multiple instance learning for soft bags via top instances. In CVPR, 2015
    • (2015) CVPR
    • Li, W.1    Vasconcelos, N.2
  • 17
  • 18
    • 78449233729 scopus 로고    scopus 로고
    • A convex method for locating regions of interest with multi-instance learning
    • Y. Li, J. T. Kwok, I. W. Tsang, and Z. Zhou. A convex method for locating regions of interest with multi-instance learning. In ECML, 2009
    • (2009) ECML
    • Li, Y.1    Kwok, J.T.2    Tsang, I.W.3    Zhou, Z.4
  • 19
    • 84887331855 scopus 로고    scopus 로고
    • Samplespecific late fusion for visual category recognition
    • D. Liu, K. Lai, G. Ye, M. Chen, and S. Chang. Samplespecific late fusion for visual category recognition. In CVPR, 2013
    • (2013) CVPR
    • Liu, D.1    Lai, K.2    Ye, G.3    Chen, M.4    Chang, S.5
  • 20
    • 84973857686 scopus 로고    scopus 로고
    • Key instance detection in multiinstance learning
    • G. Liu, J. Wu, and Z. Zhou. Key instance detection in multiinstance learning. In ACML, 2012
    • (2012) ACML
    • Liu, G.1    Wu, J.2    Zhou, Z.3
  • 21
    • 84978690061 scopus 로고    scopus 로고
    • Event fisher vectors: Robust encoding visual diversity of visual streams
    • M. Nagel, T. Mensink, and C. G. M. Snoek. Event fisher vectors: Robust encoding visual diversity of visual streams. In BMVC, 2015
    • (2015) BMVC
    • Nagel, M.1    Mensink, T.2    Snoek, C.G.M.3
  • 23
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014
    • (2014) NIPS
    • Simonyan, K.1    Zisserman, A.2
  • 24
    • 84965161185 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2014
    • (2014) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 25
    • 84866658784 scopus 로고    scopus 로고
    • Learning latent temporal structure for complex event detection
    • K. D. Tang, F. Li, and D. Koller. Learning latent temporal structure for complex event detection. In CVPR, 2012
    • (2012) CVPR
    • Tang, K.D.1    Li, F.2    Koller, D.3
  • 26
  • 27
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 29
    • 84941196011 scopus 로고    scopus 로고
    • Exploring inter-feature and inter-class relationships with deep neural networks for video classification
    • Z. Wu, Y. Jiang, J. Wang, J. Pu, and X. Xue. Exploring inter-feature and inter-class relationships with deep neural networks for video classification. In ACM MM, 2014
    • (2014) ACM MM
    • Wu, Z.1    Jiang, Y.2    Wang, J.3    Pu, J.4    Xue, X.5
  • 30
    • 84959226659 scopus 로고    scopus 로고
    • A discriminative CNN video representation for event detection
    • Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative CNN video representation for event detection. In CVPR, 2015
    • (2015) CVPR
    • Xu, Z.1    Yang, Y.2    Hauptmann, A.G.3
  • 31
    • 84898834622 scopus 로고    scopus 로고
    • Feature weighting via optimal thresholding for video analysis
    • Z. Xu, Y. Yang, I.W. Tsang, N. Sebe, and A. G. Hauptmann. Feature weighting via optimal thresholding for video analysis. In ICCV, 2013
    • (2013) ICCV
    • Xu, Z.1    Yang, Y.2    Tsang, I.W.3    Sebe, N.4    Hauptmann, A.G.5
  • 33
    • 34547816043 scopus 로고    scopus 로고
    • A weighted support vector machine for data classification
    • X. Yang, Q. Song, and Y. Wang. A weighted support vector machine for data classification. IJPRAI, 2007
    • (2007) IJPRAI
    • Yang, X.1    Song, Q.2    Wang, Y.3
  • 34
    • 84866712367 scopus 로고    scopus 로고
    • Robust late fusion with rank minimization
    • G. Ye, D. Liu, I. Jhuo, and S. Chang. Robust late fusion with rank minimization. In CVPR, 2012
    • (2012) CVPR
    • Ye, G.1    Liu, D.2    Jhuo, I.3    Chang, S.4
  • 36
    • 84986246211 scopus 로고    scopus 로고
    • Exploiting image-trained CNN architectures for unconstrained video classification
    • S. Zha, F. Luisier, W. Andrews, N. Srivastava, and R. Salakhutdinov. Exploiting image-trained CNN architectures for unconstrained video classification. In BMVC, 2015
    • (2015) BMVC
    • Zha, S.1    Luisier, F.2    Andrews, W.3    Srivastava, N.4    Salakhutdinov, R.5
  • 37
    • 84973896942 scopus 로고    scopus 로고
    • A self-paced multiple-instance learning framework for cosaliency detection
    • D. Zhang, D. Meng, C. Li, L. Jiang, Q. Zhao, and J. Han. A self-paced multiple-instance learning framework for cosaliency detection. In ICCV, 2015.
    • (2015) ICCV
    • Zhang, D.1    Meng, D.2    Li, C.3    Jiang, L.4    Zhao, Q.5    Han, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.