-
2
-
-
85019959611
-
Fast, exact and multi-scale inference for semantic image segmentation with deep Gaussian crfs
-
S. Chandra and I. Kokkinos. Fast, exact and multi-scale inference for semantic image segmentation with deep Gaussian crfs. ECCV, 2016.
-
(2016)
ECCV
-
-
Chandra, S.1
Kokkinos, I.2
-
3
-
-
84990051868
-
-
arXiv:1606. 00915
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:1606. 00915, 2016.
-
(2016)
Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected Crfs
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
4
-
-
84973890848
-
Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
-
J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In ICCV, pages 1635-1643, 2015.
-
(2015)
ICCV
, pp. 1635-1643
-
-
Dai, J.1
He, K.2
Sun, J.3
-
5
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. IJCV, 88 (2):303-338, 2010.
-
(2010)
IJCV
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
Winn, J.4
Zisserman, A.5
-
7
-
-
84990059429
-
Laplacian pyramid reconstruction and refinement for semantic segmentation
-
Springer
-
G. Ghiasi and C. C. Fowlkes. Laplacian pyramid reconstruction and refinement for semantic segmentation. In ECCV, pages 519-534. Springer, 2016.
-
(2016)
ECCV
, pp. 519-534
-
-
Ghiasi, G.1
Fowlkes, C.C.2
-
8
-
-
84856686500
-
Semantic contours from inverse detectors
-
B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse detectors. ICCV, 2011.
-
(2011)
ICCV
-
-
Hariharan, B.1
Arbelaez, P.2
Bourdev, L.3
Maji, S.4
Malik, J.5
-
9
-
-
85019265504
-
Dual learning for machine translation
-
D. He, Y. Xia, T. Qin, L. Wang, N. Yu, T.-Y. Liu, and W.-Y. Ma. Dual learning for machine translation. NIPS, 2016.
-
(2016)
NIPS
-
-
He, D.1
Xia, Y.2
Qin, T.3
Wang, L.4
Yu, N.5
Liu, T.-Y.6
Ma, W.-Y.7
-
10
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006.
-
(2006)
Science
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
12
-
-
85009928594
-
Deeplysupervised nets
-
C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeplysupervised nets. AISTATS, 2015.
-
(2015)
AISTATS
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
13
-
-
84986265730
-
Scribblesup: Scribble-supervised convolutional networks for semantic segmentation
-
D. Lin, J. Dai, J. Jia, K. He, and J. Sun. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. CVPR, 2016.
-
(2016)
CVPR
-
-
Lin, D.1
Dai, J.2
Jia, J.3
He, K.4
Sun, J.5
-
15
-
-
84986277790
-
Deep structured scene parsing by learning with image descriptions
-
L. Lin, G. Wang, R. Zhang, R. Zhang, X. Liang, andW. Zuo. Deep structured scene parsing by learning with image descriptions. CVPR, 2016.
-
(2016)
CVPR
-
-
Lin, L.1
Wang, G.2
Zhang, R.3
Zhang, R.4
Liang, X.5
Zuo, W.6
-
16
-
-
84937834115
-
Microsoft coco: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV.
-
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
17
-
-
84973860883
-
Semantic image segmentation via deep parsing network
-
Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang. Semantic image segmentation via deep parsing network. In ICCV, pages 1377-1385, 2015.
-
(2015)
ICCV
, pp. 1377-1385
-
-
Liu, Z.1
Li, X.2
Luo, P.3
Loy, C.-C.4
Tang, X.5
-
18
-
-
85060452946
-
Deep learning markov random field for semantic segmentation
-
Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Deep learning markov random field for semantic segmentation. Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2017.
-
(2017)
Transactions on Pattern Analysis and Machine Intelligence (PAMI)
-
-
Liu, Z.1
Li, X.2
Luo, P.3
Loy, C.C.4
Tang, X.5
-
19
-
-
84945230598
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, pages 3431-3440, 2015.
-
(2015)
CVPR
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
20
-
-
84959207702
-
Feedforward semantic segmentation with zoom-out features
-
M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feedforward semantic segmentation with zoom-out features. In CVPR, pages 3376-3385, 2015.
-
(2015)
CVPR
, pp. 3376-3385
-
-
Mostajabi, M.1
Yadollahpour, P.2
Shakhnarovich, G.3
-
21
-
-
84965124068
-
Weakly-and semi-supervised learning of a dcnn for semantic image segmentation
-
G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly-and semi-supervised learning of a dcnn for semantic image segmentation. ICCV, 2015.
-
(2015)
ICCV
-
-
Papandreou, G.1
Chen, L.-C.2
Murphy, K.3
Yuille, A.L.4
-
22
-
-
84973922870
-
Constrained convolutional neural networks for weakly supervised segmentation
-
D. Pathak, P. Krahenbuhl, and T. Darrell. Constrained convolutional neural networks for weakly supervised segmentation. In ICCV, pages 1796-1804, 2015.
-
(2015)
ICCV
, pp. 1796-1804
-
-
Pathak, D.1
Krahenbuhl, P.2
Darrell, T.3
-
24
-
-
84959200585
-
From image-level to pixellevel labeling with convolutional networks
-
P. O. Pinheiro and R. Collobert. From image-level to pixellevel labeling with convolutional networks. In CVPR, pages 1713-1721, 2015.
-
(2015)
CVPR
, pp. 1713-1721
-
-
Pinheiro, P.O.1
Collobert, R.2
-
25
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 115 (3):211-252, 2015.
-
(2015)
IJCV
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
26
-
-
85041900256
-
Learning object interactions and descriptions for semantic image segmentation
-
G. Wang, P. Luo, L. Lin, and X. Wang. Learning object interactions and descriptions for semantic image segmentation. CVPR, 2017.
-
(2017)
CVPR
-
-
Wang, G.1
Luo, P.2
Lin, L.3
Wang, X.4
-
28
-
-
84963829815
-
Learning deep representation for face alignment with auxiliary attributes
-
Z. Zhang, P. Luo, C. Loy, and X. Tang. Learning deep representation for face alignment with auxiliary attributes. TPAMI, 2016.
-
(2016)
TPAMI
-
-
Zhang, Z.1
Luo, P.2
Loy, C.3
Tang, X.4
-
29
-
-
85019215983
-
-
arXiv:1511. 06988v1
-
H. Zheng, F. Wu, L. Fang, Y. Liu, and M. Ji. Learning highlevel prior with convolutional neural networks for semantic segmentation. arXiv:1511. 06988v1, 2015.
-
(2015)
Learning Highlevel Prior with Convolutional Neural Networks for Semantic Segmentation
-
-
Zheng, H.1
Wu, F.2
Fang, L.3
Liu, Y.4
Ji, M.5
-
30
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. Torr. Conditional random fields as recurrent neural networks. In ICCV, pages 1529-1537, 2015.
-
(2015)
ICCV
, pp. 1529-1537
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.H.8
|