메뉴 건너뛰기




Volumn 9907 LNCS, Issue , 2016, Pages 519-534

Laplacian pyramid reconstruction and refinement for semantic segmentation

Author keywords

Convolutional neural networks; Semantic segmentation

Indexed keywords

COMPUTER VISION; CONVOLUTION; CONVOLUTIONAL NEURAL NETWORKS; LAPLACE TRANSFORMS; NETWORK ARCHITECTURE; PIXELS; SEMANTICS;

EID: 84990059429     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46487-9_32     Document Type: Conference Paper
Times cited : (396)

References (37)
  • 1
    • 0020737631 scopus 로고
    • The laplacian pyramid as a compact image code
    • Burt, P.J., Adelson, E.H.: The laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)
    • (1983) IEEE Trans. Commun , vol.31 , Issue.4 , pp. 532-540
    • Burt, P.J.1    Adelson, E.H.2
  • 2
    • 84861335519 scopus 로고    scopus 로고
    • Object recognition by sequential figureground ranking
    • Carreira, J., Li, F., Sminchisescu, C.: Object recognition by sequential figureground ranking. IJCV 98(3), 243–262 (2012)
    • (2012) IJCV , vol.98 , Issue.3 , pp. 243-262
    • Carreira, J.1    Li, F.2    Sminchisescu, C.3
  • 3
    • 84861335581 scopus 로고    scopus 로고
    • CPMC: Automatic object segmentation using constrained parametric min-cuts
    • Carreira, J., Sminchisescu, C.: CPMC: automatic object segmentation using constrained parametric min-cuts. PAMI 34(7), 1312–1328 (2012)
    • (2012) PAMI , vol.34 , Issue.7 , pp. 1312-1328
    • Carreira, J.1    Sminchisescu, C.2
  • 4
    • 84986275144 scopus 로고    scopus 로고
    • Semantic image segmentation with task-specific edge detection using CNNs and a discriminatively trained domain transform
    • Chen, L.C., Barron, J.T., Papandreou, G., Murphy, K., Yuille, A.L.: Semantic image segmentation with task-specific edge detection using CNNs and a discriminatively trained domain transform. In: CVPR (2016)
    • (2016) CVPR
    • Chen, L.C.1    Barron, J.T.2    Papandreou, G.3    Murphy, K.4    Yuille, A.L.5
  • 5
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs
    • Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015)
    • (2015) ICLR
    • Chen, L.C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 7
    • 84986290525 scopus 로고    scopus 로고
    • Attention to scale: Scaleaware semantic image segmentation
    • Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: scaleaware semantic image segmentation. In: CVPR (2015)
    • (2015) CVPR
    • Chen, L.C.1    Yang, Y.2    Wang, J.3    Xu, W.4    Yuille, A.L.5
  • 10
    • 84973890848 scopus 로고    scopus 로고
    • Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
    • Dai, J., He, K., Sun, J.: Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV, pp. 1635–1643 (2015)
    • (2015) ICCV , pp. 1635-1643
    • Dai, J.1    He, K.2    Sun, J.3
  • 11
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a laplacian pyramid of adversarial networks. In: NIPS, pp. 1486–1494 (2015)
    • (2015) NIPS , pp. 1486-1494
    • Denton, E.L.1    Chintala, S.2    Fergus, R.3
  • 13
    • 84973864191 scopus 로고    scopus 로고
    • Object detection via a multi-region and semantic segmentation-aware CNN model
    • Gidaris, S., Komodakis, N.: Object detection via a multi-region and semantic segmentation-aware CNN model. In: ICCV, pp. 1134–1142 (2015)
    • (2015) ICCV , pp. 1134-1142
    • Gidaris, S.1    Komodakis, N.2
  • 15
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: CVPR, pp. 447–456 (2015)
    • (2015) CVPR , pp. 447-456
    • Hariharan, B.1    Arbeláez, P.2    Girshick, R.3    Malik, J.4
  • 17
    • 84990056336 scopus 로고    scopus 로고
    • Identity mappings in deep residual networks
    • He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: ECCV (2016)
    • (2016) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 18
    • 61349174704 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • Kohli, P., Ladick, L., Torr, P.H.: Robust higher order potentials for enforcing label consistency. IJCV 82(3), 302–324 (2009)
    • (2009) IJCV , vol.82 , Issue.3 , pp. 302-324
    • Kohli, P.1    Ladick, L.2    Torr, P.H.3
  • 19
    • 85083952789 scopus 로고    scopus 로고
    • Pushing the boundaries of boundary detection using deep learning
    • Kokkinos, I.: Pushing the boundaries of boundary detection using deep learning. In: ICLR (2016)
    • (2016) ICLR
    • Kokkinos, I.1
  • 20
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected CRFs with gaussian edge potentials
    • Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with gaussian edge potentials. In: NIPS (2011)
    • (2011) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 21
    • 84986261676 scopus 로고    scopus 로고
    • Efficient piecewise training of deep structured models for semantic segmentation
    • Lin, G., Shen, C., van den Hengel, A., Reid, I.: Efficient piecewise training of deep structured models for semantic segmentation. In: CVPR (2016)
    • (2016) CVPR
    • Lin, G.1    Shen, C.2    Van Den Hengel, A.3    Reid, I.4
  • 22
    • 84906493406 scopus 로고    scopus 로고
    • Microsoft COCO: Common objects in context
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1_48
    • (2014) ECCV 2014. LNCS , vol.8693 , pp. 740-755
    • Lin, T.-Y.1    Maire, M.2    Belongie, S.3    Hays, J.4    Perona, P.5    Ramanan, D.6    Dollár, P.7    Zitnick, C.L.8
  • 23
    • 84973860883 scopus 로고    scopus 로고
    • Semantic image segmentation via deep parsing network
    • Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via deep parsing network. In: ICCV, pp. 1377–1385 (2015)
    • (2015) ICCV , pp. 1377-1385
    • Liu, Z.1    Li, X.2    Luo, P.3    Loy, C.C.4    Tang, X.5
  • 24
    • 84945230598 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)
    • (2015) CVPR , pp. 3431-3440
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 25
    • 84959207702 scopus 로고    scopus 로고
    • Feedforward semantic segmentation with zoom-out features
    • Mostajabi, M., Yadollahpour, P., Shakhnarovich, G.: Feedforward semantic segmentation with zoom-out features. In: CVPR, pp. 3376–3385 (2015)
    • (2015) CVPR , pp. 3376-3385
    • Mostajabi, M.1    Yadollahpour, P.2    Shakhnarovich, G.3
  • 26
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: ICCV, pp. 1520–1528 (2015)
    • (2015) ICCV , pp. 1520-1528
    • Noh, H.1    Hong, S.2    Han, B.3
  • 28
    • 58149151266 scopus 로고    scopus 로고
    • Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV 81(1), 2–23 (2009)
    • (2009) IJCV , vol.81 , Issue.1 , pp. 2-23
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 31
    • 84990024471 scopus 로고    scopus 로고
    • Matconvnet - Convolutional neural networks for matlab
    • Vedaldi, A., Lenc, K.: Matconvnet - convolutional neural networks for matlab. In: ICML (2015)
    • (2015) ICML
    • Vedaldi, A.1    Lenc, K.2
  • 32
    • 84973859794 scopus 로고    scopus 로고
    • Holistically-nested edge detection
    • Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV, pp. 1395–1403 (2015)
    • (2015) ICCV , pp. 1395-1403
    • Xie, S.1    Tu, Z.2
  • 33
    • 84973863946 scopus 로고    scopus 로고
    • Multi-scale recognition with dag-CNNs
    • Yang, S., Ramanan, D.: Multi-scale recognition with dag-CNNs. In: ICCV, pp. 1215–1223 (2015)
    • (2015) ICCV , pp. 1215-1223
    • Yang, S.1    Ramanan, D.2
  • 35
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg (2014)
    • Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_53
    • ECCV 2014. LNCS , vol.8689 , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 36
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: ICCV, pp. 2018–2025 (2011)
    • (2011) ICCV , pp. 2018-2025
    • Zeiler, M.D.1    Taylor, G.W.2    Fergus, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.