-
3
-
-
84871656223
-
Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study
-
A. Borji, D. Sihite, and L. Itti. Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study. IEEE Trans. Image Process., 22(1):55-69, 2013.
-
(2013)
IEEE Trans. Image Process.
, vol.22
, Issue.1
, pp. 55-69
-
-
Borji, A.1
Sihite, D.2
Itti, L.3
-
4
-
-
84897056830
-
Analysis of scores, datasets, and models in visual saliency prediction
-
A. Borji, H. R. Tavakoli, D. N. Sihite, and L. Itti. Analysis of scores, datasets, and models in visual saliency prediction. In ICCV, 2013.
-
(2013)
ICCV
-
-
Borji, A.1
Tavakoli, H.R.2
Sihite, D.N.3
Itti, L.4
-
5
-
-
84946605063
-
Intrinsic and extrinsic effects on image memorability
-
Z. Bylinskii, P. Isola, C. Bainbridge, A. Torralba, and A. Oliva. Intrinsic and extrinsic effects on image memorability. Vision Res., 116, Part B:165-178, 2015.
-
(2015)
Vision Res.
, vol.116
, pp. 165-178
-
-
Bylinskii, Z.1
Isola, P.2
Bainbridge, C.3
Torralba, A.4
Oliva, A.5
-
6
-
-
84921650810
-
-
Online
-
Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A. Oliva, and A. Torralba. Mit saliency benchmark. Online, 2016.
-
(2016)
Mit Saliency Benchmark
-
-
Bylinskii, Z.1
Judd, T.2
Borji, A.3
Itti, L.4
Durand, F.5
Oliva, A.6
Torralba, A.7
-
7
-
-
84996915073
-
-
Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand. What do different evaluation metrics tell us about saliency models? arXiv:1604.03605, 2016.
-
(2016)
What Do Different Evaluation Metrics Tell Us About Saliency Models?
-
-
Bylinskii, Z.1
Judd, T.2
Oliva, A.3
Torralba, A.4
Durand, F.5
-
8
-
-
85044317832
-
Where should saliency models look next?
-
Z. Bylinskii, A. Recasens, A. Borji, A. Oliva, A. Torralba, and F. Durand. Where should saliency models look next? In ECCV, 2016.
-
(2016)
ECCV
-
-
Bylinskii, Z.1
Recasens, A.2
Borji, A.3
Oliva, A.4
Torralba, A.5
Durand, F.6
-
9
-
-
84878384522
-
Visual saliency estimation by non-linearly integrating features using region covariances
-
E. Erdem and A. Erdem. Visual saliency estimation by non-linearly integrating features using region covariances. J Vis, 13(4), 2013.
-
(2013)
J Vis
, vol.13
, Issue.4
-
-
Erdem, E.1
Erdem, A.2
-
10
-
-
80053117458
-
Decorrelation and distinctiveness provide with human-like saliency
-
A. Garcia-Diaz, X. Fdez-Vidal, X. Pardo, and R. Dosil. Decorrelation and distinctiveness provide with human-like saliency. In ACIVS, 2009.
-
(2009)
ACIVS
-
-
Garcia-Diaz, A.1
Fdez-Vidal, X.2
Pardo, X.3
Dosil, R.4
-
12
-
-
84973923049
-
Salicon: Reducing the semantic gap in saliency prediction by adapting deep neural networks
-
X. Huang, C. Shen, X. Boix, and Q. Zhao. Salicon: Reducing the semantic gap in saliency prediction by adapting deep neural networks. In ICCV, 2015.
-
(2015)
ICCV
-
-
Huang, X.1
Shen, C.2
Boix, X.3
Zhao, Q.4
-
13
-
-
67349174184
-
Bayesian surprise attracts human attention
-
L. Itti and P. Baldi. Bayesian surprise attracts human attention. Vision Res., 49(10):1295 - 1306, 2009.
-
(2009)
Vision Res.
, vol.49
, Issue.10
, pp. 1295-1306
-
-
Itti, L.1
Baldi, P.2
-
16
-
-
24944482609
-
Assessing the contribution of color in visual attention
-
T. Jost, N. Ouerhani, R. von Wartburg, R. Müri, and H. Hügli. Assessing the contribution of color in visual attention. Comput. Vis. Image Und., 100(12):107 - 123, 2005.
-
(2005)
Comput. Vis. Image Und.
, vol.100
, Issue.12
, pp. 107-123
-
-
Jost, T.1
Ouerhani, N.2
Von Wartburg, R.3
Müri, R.4
Hügli, H.5
-
17
-
-
84878629490
-
A benchmark of computational models of saliency to predict human fixations
-
Massachusetts institute of technology
-
T. Judd, F. Durand, and A. Torralba. A benchmark of computational models of saliency to predict human fixations. Technical Report MIT-CSAIL-TR-2012-001, Massachusetts institute of technology, 2012.
-
(2012)
Technical Report MIT-CSAIL-TR-2012-001
-
-
Judd, T.1
Durand, F.2
Torralba, A.3
-
19
-
-
79952814300
-
Predicting eye fixations on complex visual stimuli using local symmetry
-
G. Kootstra, B. de Boer, and L. R. B. Schomaker. Predicting eye fixations on complex visual stimuli using local symmetry. Cog. Comp., 3(1):223-240, 2011.
-
(2011)
Cog. Comp.
, vol.3
, Issue.1
, pp. 223-240
-
-
Kootstra, G.1
De Boer, B.2
Schomaker, L.R.B.3
-
20
-
-
84952683316
-
Information-theoretic model comparison unifies saliency metrics
-
M. Kümmerer, T. S. A. Wallis, and M. Bethge. Information-theoretic model comparison unifies saliency metrics. Proc. Natl. Acad. Sci. U.S.A., 112(52):16054-16059, 2015.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, Issue.52
, pp. 16054-16059
-
-
Kümmerer, M.1
Wallis, T.S.A.2
Bethge, M.3
-
21
-
-
84874351786
-
Methods for comparing scan-paths and saliency maps: Strengths and weaknesses
-
O. Le Meur and T. Baccino. Methods for comparing scan-paths and saliency maps: strengths and weaknesses. Behav Res Methods, 45(1):251-266, 2013.
-
(2013)
Behav Res Methods
, vol.45
, Issue.1
, pp. 251-266
-
-
Le Meur, O.1
Baccino, T.2
-
22
-
-
84911400874
-
The secrets of salient object segmentation
-
Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille. The secrets of salient object segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Li, Y.1
Hou, X.2
Koch, C.3
Rehg, J.M.4
Yuille, A.L.5
-
23
-
-
84986276756
-
Shallow and deep convolutional networks for saliency prediction
-
J. Pan, K. McGuinness, E. Sayrol, N. O'Connor, and X. Giro-i Nieto. Shallow and deep convolutional networks for saliency prediction. In CVPR, 2016.
-
(2016)
CVPR
-
-
Pan, J.1
McGuinness, K.2
Sayrol, E.3
O'Connor, N.4
Giro-I Nieto, X.5
-
24
-
-
20544446875
-
Components of bottom-up gaze allocation in natural images
-
R. J. Peters, A. Iyer, L. Itti, and C. Koch. Components of bottom-up gaze allocation in natural images. Vision Res., 45:2397-2416, 2005.
-
(2005)
Vision Res.
, vol.45
, pp. 2397-2416
-
-
Peters, R.J.1
Iyer, A.2
Itti, L.3
Koch, C.4
-
25
-
-
80054108659
-
An eye fixation database for saliency detection in images
-
S. Ramanathan, H. Katti, N. Sebe, M. Kankanhalli, and T.S. Chua. An eye fixation database for saliency detection in images. In ECCV, 2010.
-
(2010)
ECCV
-
-
Ramanathan, S.1
Katti, H.2
Sebe, N.3
Kankanhalli, M.4
Chua, T.S.5
-
26
-
-
84898774374
-
Saliency and human fixations: State-of-the-art and study of comparison metrics
-
N. Riche, M. Duvinage, M. Mancas, B. Gosselin, and T. Du-toit. Saliency and human fixations: State-of-the-art and study of comparison metrics. In ICCV, 2013.
-
(2013)
ICCV
-
-
Riche, N.1
Duvinage, M.2
Mancas, M.3
Gosselin, B.4
Du-Toit, T.5
-
28
-
-
80053106764
-
Computational versus psychophysical bottom-up image saliency: A comparative evaluation study
-
A. Toet. Computational versus psychophysical bottom-up image saliency: A comparative evaluation study. IEEE Trans. Pattern Anal. Mach. Intell., 33(11):2131-2146, 2011.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.11
, pp. 2131-2146
-
-
Toet, A.1
-
29
-
-
33750341577
-
Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search
-
A. Torralba, A. Oliva, M. Castelhano, and J. Henderson. Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev, 113(4):766-86, 2006.
-
(2006)
Psychol Rev
, vol.113
, Issue.4
, pp. 766-786
-
-
Torralba, A.1
Oliva, A.2
Castelhano, M.3
Henderson, J.4
-
30
-
-
77956724722
-
Attention and communication: Eye-movement-based research paradigms
-
W. Zangemeister, H. Stiehl, and C. Freksa, editors, North-Holland
-
B. Velichkovsky, M. Pomplun, and J. Rieser. Attention and communication: Eye-movement-based research paradigms. In W. Zangemeister, H. Stiehl, and C. Freksa, editors, Visual Attention and Cognition, volume 116 of Advances in Psychology, pages 125 - 154. North-Holland, 1996.
-
(1996)
Visual Attention and Cognition, Volume 116 of Advances in Psychology
, pp. 125-154
-
-
Velichkovsky, B.1
Pomplun, M.2
Rieser, J.3
-
31
-
-
84911369162
-
Large-scale optimization of hierarchical features for saliency prediction in natural images
-
E. Vig, M. Dorr, and D. Cox. Large-scale optimization of hierarchical features for saliency prediction in natural images. In CVPR, 2014.
-
(2014)
CVPR
-
-
Vig, E.1
Dorr, M.2
Cox, D.3
-
32
-
-
84986321389
-
Spatially binned roc: A comprehensive saliency metric
-
C. Wloka and J. Tsotsos. Spatially binned roc: A comprehensive saliency metric. In CVPR, 2016.
-
(2016)
CVPR
-
-
Wloka, C.1
Tsotsos, J.2
-
33
-
-
84893634313
-
Predicting human gaze beyond pixels
-
J. Xu, M. Jiang, S. Wang, M. S. Kankanhalli, and Q. Zhao. Predicting human gaze beyond pixels. J Vis, 14(1):1-20, 2014.
-
(2014)
J Vis
, vol.14
, Issue.1
, pp. 1-20
-
-
Xu, J.1
Jiang, M.2
Wang, S.3
Kankanhalli, M.S.4
Zhao, Q.5
-
34
-
-
84986316457
-
-
P. Xu, K. A. Ehinger, Y. Zhang, A. Finkelstein, S. R. Kulka-rni, and J. Xiao. Turkergaze: Crowdsourcing saliency with webcam based eye tracking. In arXiv:1504.06755v1, 2015.
-
(2015)
Turkergaze: Crowdsourcing Saliency with Webcam Based Eye Tracking
-
-
Xu, P.1
Ehinger, K.A.2
Zhang, Y.3
Finkelstein, A.4
Kulka-Rni, S.R.5
Xiao, J.6
-
35
-
-
84898819857
-
Saliency detection: A boolean map approach
-
J. Zhang and S. Sclaroff. Saliency detection: A boolean map approach. In ICCV, 2013.
-
(2013)
ICCV
-
-
Zhang, J.1
Sclaroff, S.2
-
36
-
-
58149506125
-
Sun: A Bayesian framework for saliency using natural statistics
-
L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cot-trell. Sun: A bayesian framework for saliency using natural statistics. J Vis, 8(7), 2008.
-
(2008)
J Vis
, vol.8
, Issue.7
-
-
Zhang, L.1
Tong, M.H.2
Marks, T.K.3
Shan, H.4
Cot-Trell, G.W.5
|