메뉴 건너뛰기




Volumn 112, Issue 52, 2015, Pages 16054-16059

Information-theoretic model comparison unifies saliency metrics

Author keywords

Eye movements; Likelihood; Point processes; Probabilistic modeling; Visual attention

Indexed keywords

ARTICLE; COMPUTER PROGRAM; EYE MOVEMENT; HUMAN; INFORMATION; MEDICAL LITERATURE; PREDICTION; PRIORITY JOURNAL; QUANTITATIVE ANALYSIS; THEORETICAL MODEL; ALGORITHM; BIOLOGICAL MODEL; BIOLOGY; COMPARATIVE STUDY; COMPUTER SIMULATION; EYE FIXATION; PATTERN RECOGNITION; PHOTOSTIMULATION; PHYSIOLOGY; PROCEDURES; REPRODUCIBILITY; STATISTICAL MODEL;

EID: 84952683316     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1510393112     Document Type: Article
Times cited : (159)

References (49)
  • 1
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254-1259.
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , Issue.11 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 2
    • 84870220894 scopus 로고    scopus 로고
    • State-of- The-art in visual attention modeling
    • Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185-207.
    • (2013) IEEE Trans Pattern Anal Mach Intell , vol.35 , Issue.1 , pp. 185-207
    • Borji, A.1    Itti, L.2
  • 3
    • 84871656223 scopus 로고    scopus 로고
    • Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study
    • Borji A, Sihite DN, Itti L (2013) Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study. IEEE Trans Image Processing 22(1):55-69.
    • (2013) IEEE Trans Image Processing , vol.22 , Issue.1 , pp. 55-69
    • Borji, A.1    Sihite, D.N.2    Itti, L.3
  • 6
    • 84946570552 scopus 로고    scopus 로고
    • On computational modeling of visual saliency: Examining what's right, and what's left
    • Bruce ND, Wloka C, Frosst N, Rahman S, Tsotsos JK (2015) On computational modeling of visual saliency: Examining what's right, and what's left. Vision Res 116(2):92-112.
    • (2015) Vision Res , vol.116 , Issue.2 , pp. 92-112
    • Bruce, N.D.1    Wloka, C.2    Frosst, N.3    Rahman, S.4    Tsotsos, J.K.5
  • 8
    • 80052623702 scopus 로고    scopus 로고
    • Measures and limits of models of fixation selection
    • Wilming N, Betz T, Kietzmann TC, König P (2011) Measures and limits of models of fixation selection. PLoS One 6(9):e24038.
    • (2011) PLoS One , vol.6 , Issue.9 , pp. e24038
    • Wilming, N.1    Betz, T.2    Kietzmann, T.C.3    König, P.4
  • 10
    • 84886280179 scopus 로고    scopus 로고
    • Modeling fixation locations using spatial point processes
    • Barthelmé S, Trukenbrod H, Engbert R, Wichmann F (2013) Modeling fixation locations using spatial point processes. J Vis 13(12):1-34.
    • (2013) J Vis , vol.13 , Issue.12 , pp. 1-34
    • Barthelmé, S.1    Trukenbrod, H.2    Engbert, R.3    Wichmann, F.4
  • 12
    • 84921630739 scopus 로고    scopus 로고
    • Spatial statistics and attentional dynamics in scene viewing
    • Engbert R, Trukenbrod HA, Barthelmé S, Wichmann FA (2015) Spatial statistics and attentional dynamics in scene viewing. J Vis 15(1):14.
    • (2015) J Vis , vol.15 , Issue.1 , pp. 14
    • Engbert, R.1    Trukenbrod, H.A.2    Barthelmé, S.3    Wichmann, F.A.4
  • 13
    • 0002183088 scopus 로고
    • Reference posterior distributions for Bayesian inference
    • Bernardo JM (1979) Reference posterior distributions for Bayesian inference. J R Stat Soc Ser B Methodol 41(2):113-147.
    • (1979) J R Stat Soc Ser B Methodol , vol.41 , Issue.2 , pp. 113-147
    • Bernardo, J.M.1
  • 14
    • 70449527968 scopus 로고    scopus 로고
    • Systematic tendencies in scene viewing
    • Tatler BW, Vincent BT (2008) Systematic tendencies in scene viewing. J Eye Mov Res 2(2):1-18.
    • (2008) J Eye Mov Res , vol.2 , Issue.2 , pp. 1-18
    • Tatler, B.W.1    Vincent, B.T.2
  • 15
    • 70449520622 scopus 로고    scopus 로고
    • The prominence of behavioural biases in eye guidance
    • Tatler BW, Vincent BT (2009) The prominence of behavioural biases in eye guidance. Vis Cogn 17(6-7):1029-1054.
    • (2009) Vis Cogn , vol.17 , Issue.6-7 , pp. 1029-1054
    • Tatler, B.W.1    Vincent, B.T.2
  • 16
    • 80054110780 scopus 로고    scopus 로고
    • Eye guidance in natural vision: Reinterpreting salience
    • Tatler BW, Hayhoe MM, Land MF, Ballard DH (2011) Eye guidance in natural vision: Reinterpreting salience. J Vis 11(5):5.
    • (2011) J Vis , vol.11 , Issue.5 , pp. 5
    • Tatler, B.W.1    Hayhoe, M.M.2    Land, M.F.3    Ballard, D.H.4
  • 17
    • 70349919085 scopus 로고    scopus 로고
    • Modeling search for people in 900 scenes: A combined source model of eye guidance
    • Ehinger KA, Hidalgo-Sotelo B, Torralba A, Oliva A (2009) Modeling search for people in 900 scenes: A combined source model of eye guidance. Vis Cogn 17(6-7):945-978.
    • (2009) Vis Cogn , vol.17 , Issue.6-7 , pp. 945-978
    • Ehinger, K.A.1    Hidalgo-Sotelo, B.2    Torralba, A.3    Oliva, A.4
  • 18
    • 79955142718 scopus 로고    scopus 로고
    • Variability of eye movements when viewing dynamic natural scenes
    • Dorr M, Martinetz T, Gegenfurtner KR, Barth E (2010) Variability of eye movements when viewing dynamic natural scenes. J Vis 10(10):28.
    • (2010) J Vis , vol.10 , Issue.10 , pp. 28
    • Dorr, M.1    Martinetz, T.2    Gegenfurtner, K.R.3    Barth, E.4
  • 19
    • 70549083571 scopus 로고    scopus 로고
    • Do we look at lights? Using mixture modelling to distinguish between low- and high-level factors in natural image viewing
    • Vincent BT, Baddeley RJ, Correani A, Troscianko T, Leonards U (2009) Do we look at lights? Using mixture modelling to distinguish between low- and high-level factors in natural image viewing. Vis Cogn 17(6-7):856-879.
    • (2009) Vis Cogn , vol.17 , Issue.6-7 , pp. 856-879
    • Vincent, B.T.1    Baddeley, R.J.2    Correani, A.3    Troscianko, T.4    Leonards, U.5
  • 20
    • 67349176044 scopus 로고    scopus 로고
    • Simple summation rule for optimal fixation selection in visual search
    • Najemnik J, Geisler WS (2009) Simple summation rule for optimal fixation selection in visual search. Vision Res 49(10):1286-1294.
    • (2009) Vision Res , vol.49 , Issue.10 , pp. 1286-1294
    • Najemnik, J.1    Geisler, W.S.2
  • 21
    • 15244352522 scopus 로고    scopus 로고
    • Optimal eye movement strategies in visual search
    • Najemnik J, Geisler WS (2005) Optimal eye movement strategies in visual search. Nature 434(7031):387-391.
    • (2005) Nature , vol.434 , Issue.7031 , pp. 387-391
    • Najemnik, J.1    Geisler, W.S.2
  • 22
    • 84860800946 scopus 로고    scopus 로고
    • Human visual search does not maximize the postsaccadic probability of identifying targets
    • Morvan C, Maloney LT (2012) Human visual search does not maximize the postsaccadic probability of identifying targets. PLoS Comput Biol 8(2):e1002342.
    • (2012) PLoS Comput Biol , vol.8 , Issue.2 , pp. e1002342
    • Morvan, C.1    Maloney, L.T.2
  • 24
    • 65649150346 scopus 로고    scopus 로고
    • Center-surround patterns emerge as optimal predictors for human saccade targets
    • Kienzle W, Franz MO, Schölkopf B, Wichmann FA (2009) Center-surround patterns emerge as optimal predictors for human saccade targets. J Vis 9(5):1-15.
    • (2009) J Vis , vol.9 , Issue.5 , pp. 1-15
    • Kienzle, W.1    Franz, M.O.2    Schölkopf, B.3    Wichmann, F.A.4
  • 26
    • 33750341577 scopus 로고    scopus 로고
    • Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search
    • Torralba A, Oliva A, Castelhano MS, Henderson JM (2006) Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychol Rev 113(4):766-786.
    • (2006) Psychol Rev , vol.113 , Issue.4 , pp. 766-786
    • Torralba, A.1    Oliva, A.2    Castelhano, M.S.3    Henderson, J.M.4
  • 28
    • 58149506125 scopus 로고    scopus 로고
    • SUN: A Bayesian framework for saliency using natural statistics
    • Zhang L, Tong MH, Marks TK, Shan H, Cottrell GW (2008) SUN: A Bayesian framework for saliency using natural statistics. J Vis 8(7):1-20.
    • (2008) J Vis , vol.8 , Issue.7 , pp. 1-20
    • Zhang, L.1    Tong, M.H.2    Marks, T.K.3    Shan, H.4    Cottrell, G.W.5
  • 31
    • 62649143331 scopus 로고    scopus 로고
    • Saliency, attention, and visual search: An information theoretic approach
    • Bruce N, Tsotsos J (2009) Saliency, attention, and visual search: An information theoretic approach. J Vis 9(3):1-24.
    • (2009) J Vis , vol.9 , Issue.3 , pp. 1-24
    • Bruce, N.1    Tsotsos, J.2
  • 34
    • 84878384522 scopus 로고    scopus 로고
    • Visual saliency estimation by nonlinearly integrating features using region covariances
    • Erdem E, Erdem A (2013) Visual saliency estimation by nonlinearly integrating features using region covariances. J Vis 13(4):11-11.
    • (2013) J Vis , vol.13 , Issue.4 , pp. 11-11
    • Erdem, E.1    Erdem, A.2
  • 35
    • 84878015694 scopus 로고    scopus 로고
    • RARE2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis
    • Riche N, et al. (2013) RARE2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis. Signal Process Image Commun 28(6):642-658.
    • (2013) Signal Process Image Commun , vol.28 , Issue.6 , pp. 642-658
    • Riche, N.1
  • 36
    • 84952700067 scopus 로고    scopus 로고
    • Exploiting surroundedness for saliency detection: A Boolean map approach
    • in press
    • Zhang J, Sclaroff S (2015) Exploiting surroundedness for saliency detection: A Boolean map approach. IEEE Trans Pattern Anal Mach Intell, in press.
    • (2015) IEEE Trans Pattern Anal Mach Intell
    • Zhang, J.1    Sclaroff, S.2
  • 37
    • 84911369162 scopus 로고    scopus 로고
    • Large-scale optimization of hierarchical features for saliency prediction in natural images
    • IEEE Computer Society, Washington, DC
    • Vig E, Dorr M, Cox D (2014) Large-scale optimization of hierarchical features for saliency prediction in natural images. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, Washington, DC), pp 2798-2805.
    • (2014) Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition , pp. 2798-2805
    • Vig, E.1    Dorr, M.2    Cox, D.3
  • 39
    • 11144343233 scopus 로고    scopus 로고
    • Visual correlates of fixation selection: Effects of scale and time
    • Tatler BW, Baddeley RJ, Gilchrist ID (2005) Visual correlates of fixation selection: Effects of scale and time. Vision Res 45(5):643-659.
    • (2005) Vision Res , vol.45 , Issue.5 , pp. 643-659
    • Tatler, B.W.1    Baddeley, R.J.2    Gilchrist, I.D.3
  • 41
    • 30444455292 scopus 로고    scopus 로고
    • A principled approach to detecting surprising events in video a principled approach to detecting surprising events in video
    • IEEE Computer Society, Washington, DC
    • Itti L, Baldi P (2005) A Principled Approach to Detecting Surprising Events in Video A principled approach to detecting surprising events in video. Proceedings of the 2005 IEEE Conference on Computer Vision and Patter Recognition (IEEE Computer Society, Washington, DC) Vol 1, pp 631-637.
    • (2005) Proceedings of the 2005 IEEE Conference on Computer Vision and Patter Recognition , vol.1 , pp. 631-637
    • Itti, L.1    Baldi, P.2
  • 42
    • 24644481357 scopus 로고    scopus 로고
    • Quantifying the contribution of low-level saliency to human eye movements in dynamic scenes
    • Itti L (2005) Quantifying the contribution of low-level saliency to human eye movements in dynamic scenes. Vis Cogn 12(6):1093-1123.
    • (2005) Vis Cogn , vol.12 , Issue.6 , pp. 1093-1123
    • Itti, L.1
  • 44
    • 77952291644 scopus 로고    scopus 로고
    • Of bits and wows: A Bayesian theory of surprise with applications to attention
    • Baldi P, Itti L (2010) Of bits and wows: A Bayesian theory of surprise with applications to attention. Neural Netw 23(5):649-666.
    • (2010) Neural Netw , vol.23 , Issue.5 , pp. 649-666
    • Baldi, P.1    Itti, L.2
  • 47
    • 34548472194 scopus 로고    scopus 로고
    • Predicting visual fixations on video based on low-level visual features
    • Le Meur O, Le Callet P, Barba D (2007) Predicting visual fixations on video based on low-level visual features. Vision Res 47(19):2483-2498.
    • (2007) Vision Res , vol.47 , Issue.19 , pp. 2483-2498
    • Le Meur, O.1    Le Callet, P.2    Barba, D.3
  • 48
    • 84874351786 scopus 로고    scopus 로고
    • Methods for comparing scanpaths and saliency maps: Strengths and weaknesses
    • Le Meur O, Baccino T (2013) Methods for comparing scanpaths and saliency maps: Strengths and weaknesses. Behav Res Methods 45(1):251-266.
    • (2013) Behav Res Methods , vol.45 , Issue.1 , pp. 251-266
    • Le Meur, O.1    Baccino, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.