메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 266-274

Diversified texture synthesis with feed-forward networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER GRAPHICS; COMPUTER VISION; ECONOMIC AND SOCIAL EFFECTS;

EID: 85041899774     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.36     Document Type: Conference Paper
Times cited : (289)

References (35)
  • 3
    • 0030705856 scopus 로고    scopus 로고
    • Multiresolution sampling procedure for analysis and synthesis of texture images
    • J. S. De Bonet. Multiresolution sampling procedure for analysis and synthesis of texture images. In SIGGRAPH, 1997.
    • (1997) SIGGRAPH
    • De Bonet, J.S.1
  • 4
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative image models using a Laplacian pyramid of adversarial networks. In NIPS, 2015.
    • (2015) NIPS
    • Denton, E.L.1    Chintala, S.2    Fergus, R.3
  • 5
    • 85019269786 scopus 로고    scopus 로고
    • Generating images with perceptual similarity metrics based on deep networks
    • A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep networks. In NIPS, 2016.
    • (2016) NIPS
    • Dosovitskiy, A.1    Brox, T.2
  • 6
    • 84986250533 scopus 로고    scopus 로고
    • Inverting visual representations with convolutional networks
    • A. Dosovitskiy and T. Brox. Inverting visual representations with convolutional networks. In CVPR, 2016.
    • (2016) CVPR
    • Dosovitskiy, A.1    Brox, T.2
  • 7
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • A. Dosovitskiy, J. Tobias Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Dosovitskiy, A.1    Tobias Springenberg, J.2    Brox, T.3
  • 9
    • 0035148826 scopus 로고    scopus 로고
    • Image quilting for texture synthesis and transfer
    • A. A. Efros and W. T. Freeman. Image quilting for texture synthesis and transfer. In SIGGRAPH, 2001.
    • (2001) SIGGRAPH
    • Efros, A.A.1    Freeman, W.T.2
  • 10
    • 0033285309 scopus 로고    scopus 로고
    • Texture synthesis by nonparametric sampling
    • A. A. Efros and T. K. Leung. Texture synthesis by nonparametric sampling. In ICCV, 1999.
    • (1999) ICCV
    • Efros, A.A.1    Leung, T.K.2
  • 11
    • 84986301045 scopus 로고    scopus 로고
    • Split and match: Example-based adaptive patch sampling for unsupervised style transfer
    • O. Frigo, N. Sabater, J. Delon, and P. Hellier. Split and match: Example-based adaptive patch sampling for unsupervised style transfer. In CVPR, 2016.
    • (2016) CVPR
    • Frigo, O.1    Sabater, N.2    Delon, J.3    Hellier, P.4
  • 13
    • 84965135705 scopus 로고    scopus 로고
    • Texture synthesis using convolutional neural networks
    • L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis using convolutional neural networks. In NIPS, 2015.
    • (2015) NIPS
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 14
    • 84986325538 scopus 로고    scopus 로고
    • Image style transfer using convolutional neural networks
    • L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. In CVPR, 2016.
    • (2016) CVPR
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 17
    • 0029182262 scopus 로고
    • Pyramid-based texture analysis/synthesis
    • D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH, 1995.
    • (1995) SIGGRAPH
    • Heeger, D.J.1    Bergen, J.R.2
  • 19
    • 85019245160 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016.
    • (2016) ECCV
    • Johnson, J.1    Alahi, A.2    Fei-Fei, L.3
  • 21
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 22
    • 33646030942 scopus 로고    scopus 로고
    • Graphcut textures: Image and video synthesis using graph cuts
    • V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: image and video synthesis using graph cuts. In SIGGRAPH, 2003.
    • (2003) SIGGRAPH
    • Kwatra, V.1    Schödl, A.2    Essa, I.3    Turk, G.4    Bobick, A.5
  • 24
    • 84986290423 scopus 로고    scopus 로고
    • Combining markov random fields and convolutional neural networks for image synthesis
    • C. Li and M. Wand. Combining markov random fields and convolutional neural networks for image synthesis. In CVPR, 2016.
    • (2016) CVPR
    • Li, C.1    Wand, M.2
  • 25
    • 84990854650 scopus 로고    scopus 로고
    • Precomputed real-time texture synthesis with markovian generative adversarial networks
    • C. Li and M.Wand. Precomputed real-time texture synthesis with markovian generative adversarial networks. In ECCV, 2016.
    • (2016) ECCV
    • Li, C.1    Wand, M.2
  • 26
    • 84959213675 scopus 로고    scopus 로고
    • Understanding deep image representations by inverting them
    • A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In CVPR, 2015.
    • (2015) CVPR
    • Mahendran, A.1    Vedaldi, A.2
  • 27
    • 0034291204 scopus 로고    scopus 로고
    • A parametric texture model based on joint statistics of complex wavelet coefficients
    • J. Portilla and E. P. Simoncelli. A parametric texture model based on joint statistics of complex wavelet coefficients. IJCV, 40(1): 49-70, 2000.
    • (2000) IJCV , vol.40 , Issue.1 , pp. 49-70
    • Portilla, J.1    Simoncelli, E.P.2
  • 28
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 32
    • 84998882079 scopus 로고    scopus 로고
    • Texture networks: Feed-forward synthesis of textures and stylized images
    • D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Texture networks: Feed-forward synthesis of textures and stylized images. In ICML, 2016.
    • (2016) ICML
    • Ulyanov, D.1    Lebedev, V.2    Vedaldi, A.3    Lempitsky, V.4
  • 34
    • 0034448271 scopus 로고    scopus 로고
    • Fast texture synthesis using treestructured vector quantization
    • L.-Y. Wei and M. Levoy. Fast texture synthesis using treestructured vector quantization. In SIGGRAPH, 2000.
    • (2000) SIGGRAPH
    • Wei, L.-Y.1    Levoy, M.2
  • 35
    • 0035148753 scopus 로고    scopus 로고
    • Texture synthesis over arbitrary manifold surfaces
    • L.-Y. Wei and M. Levoy. Texture synthesis over arbitrary manifold surfaces. In SIGGRAPH, 2001.
    • (2001) SIGGRAPH
    • Wei, L.-Y.1    Levoy, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.