-
1
-
-
84926358845
-
Recursive deep models for semantic compositionality over a sentiment treebank
-
R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng and C. Potts, Recursive Deep Models for Semantic Compositionality over a Sentiment Treebank, 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, WA, 2013, pp. 1631-1642.
-
(2013)
2013 Conference On Empirical Methods in Natural Language Processing, Seattle, WA
, pp. 1631-1642
-
-
Socher, R.1
Perelygin, A.2
Wu, J.3
Chuang, J.4
Manning, C.D.5
Ng, A.6
Potts, C.7
-
2
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado and J. Deen, Distributed Representations of Words and Phrases and Their Compositionality, 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, 2013, pp. 3111-3119.
-
(2013)
26th International Conference On Neural Information Processing Systems, Lake Tahoe, NV
, pp. 3111-3119
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Deen, J.5
-
3
-
-
80053438267
-
Parsing natural scenes and natural language with recursive neural networks
-
R. Socher, C. C. Y. Lin, A. Y. Ng and C. D. Manning, Parsing Natural Scenes and Natural Language with Recursive Neural Networks, 28th International Conference on Machine Learning, Bellevue, WA, 2011, pp. 129-136.
-
(2011)
28th International Conference On Machine Learning, Bellevue, WA
, pp. 129-136
-
-
Socher, R.1
Lin, C.C.Y.2
Ng, A.Y.3
Manning, C.D.4
-
4
-
-
84958753956
-
Developing a successful semeval task in sentiment analysis of twitter and other social media texts
-
March
-
P. Nakov, S. Rosenthal, S. Kiritchenko, S. M. Mohammad, Z. Kozareva and A. Ritter, Developing a Successful SemEval Task in Sentiment Analysis of Twitter and Other Social Media Texts, Language Resources and Evaluation, Vol. 50, No. 1, pp. 35-65, March, 2016.
-
(2016)
Language Resources and Evaluation
, vol.50
, Issue.1
, pp. 35-65
-
-
Nakov, P.1
Rosenthal, S.2
Kiritchenko, S.3
Mohammad, S.M.4
Kozareva, Z.5
Ritter, A.6
-
6
-
-
84902513871
-
An empirical study of sentence features for subjectivity and polarity classification
-
October
-
J. M. Chenlo and D. E. Losada, An Empirical Study of Sentence Features for Subjectivity and Polarity Classifi cation, Information Sciences, Vol. 280, No. 1 pp. 275-288, October, 2014.
-
(2014)
Information Sciences
, vol.280
, Issue.1
, pp. 275-288
-
-
Chenlo, J.M.1
Losada, D.E.2
-
7
-
-
84891925871
-
Identifying the best feature combination for sentiment analysis of customer reviews
-
C. Priyanka and D. Gupta, Identifying the Best Feature Combination for Sentiment Analysis of Customer Reviews, 2013 International Conference on Advances in Computing, Communications and Informatics, Mysore, India, 2013, pp. 102-108.
-
(2013)
2013 International Conference On Advances in Computing, Communications and Informatics, Mysore, India
, pp. 102-108
-
-
Priyanka, C.1
Gupta, D.2
-
8
-
-
85128719106
-
Twitter sentiment analysis: The good the bad and the OMG!
-
E. Kouloumpis, T. Wilson and J. Moore, Twitter Sentiment Analysis: The Good the Bad and the OMG!, Fifth International AAAI Conference on Weblogs and Social Media, Barcelona, Spain, 2011, pp. 538-541.
-
(2011)
Fifth International AAAI Conference On Weblogs and Social Media, Barcelona, Spain
, pp. 538-541
-
-
Kouloumpis, E.1
Wilson, T.2
Moore, J.3
-
9
-
-
84872417810
-
Twitter Partof-speech Tagging Using Pre-classification hidden markov model
-
S. Sun, H. Liu, H. Lin and A. Abraham, Twitter Partof-speech Tagging Using Pre-classification Hidden Markov Model, 2012 IEEE International Conference on Systems, Man, and Cybernetics, Seoul, South Korea, 2012, pp. 1118-1123.
-
(2012)
2012 IEEE International Conference On Systems, Man, and Cybernetics, Seoul, South Korea
, pp. 1118-1123
-
-
Sun, S.1
Liu, H.2
Lin, H.3
Abraham, A.4
-
10
-
-
84926044853
-
A joint segmentation and classification framework for sentiment analysis
-
D. Tang, F. Wei, B. Qin, L. Dong, T. Liu and M. Zhou, A Joint Segmentation and Classification Framework for Sentiment Analysis, 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014, pp. 477-487.
-
(2014)
2014 Conference On Empirical Methods in Natural Language Processing, Doha, Qatar
, pp. 477-487
-
-
Tang, D.1
Wei, F.2
Qin, B.3
Dong, L.4
Liu, T.5
Zhou, M.6
-
11
-
-
84892366876
-
TOM: Twitter Opinion Mining Framework Using Hybrid Classification Scheme
-
January
-
F. H. Khan, S. Bashir and U. Qamar, TOM: Twitter Opinion Mining Framework Using Hybrid Classification Scheme, Decision Support Systems, Vol. 57, pp. 245-257, January, 2014.
-
(2014)
Decision Support Systems
, vol.57
, pp. 245-257
-
-
Khan, F.H.1
Bashir, S.2
Qamar, U.3
-
12
-
-
85034054192
-
Senti word net 3.0: An enhanced lexical resource for sentiment analysis and opinion mining
-
S. Baccianella, A. Esuli and F. Sebastiani, SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining, Seventh Conference on International Language Resources and Evaluation, Valletta, Malta, 2010, pp. 2200-2204.
-
(2010)
Seventh Conference On International Language Resources and Evaluation, Valletta, Malta
, pp. 2200-2204
-
-
Baccianella, S.1
Esuli, A.2
Sebastiani, F.3
-
13
-
-
84959882443
-
Evaluation of word vector representations by subspace alignment
-
Y. Tsvetkov, M. Faruqui, W. Ling, G. Lample and C. Dyer, Evaluation of Word Vector Representations by Subspace Alignment, 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 2015, pp. 2049-2054.
-
(2015)
2015 Conference On Empirical Methods in Natural Language Processing, Lisbon, Portugal
, pp. 2049-2054
-
-
Tsvetkov, Y.1
Faruqui, M.2
Ling, W.3
Lample, G.4
Dyer, C.5
-
14
-
-
79959829092
-
Recurrent neural network based language model
-
T. Mikolov, M. Karafiát, L. Burget, J. H. Cernocky and S. Khudanpur, Recurrent Neural Network Based Language Model, 11th Annual Conference of the International Speech Communication Association, Makuhari, Japan, 2010, pp. 1045-1048.
-
(2010)
11th Annual Conference of the International Speech Communication Association, Makuhari, Japan
, pp. 1045-1048
-
-
Mikolov, T.1
Karafiát, M.2
Burget, L.3
Cernocky, J.H.4
Khudanpur, S.5
-
15
-
-
84960351529
-
Exploring sentiment parsing of microblogging texts for opinion polling on Chinese public figures
-
September
-
J. Cheng, X. Zhang, P. Li, S. Zhang, Z. Ding and H. Wang, Exploring Sentiment Parsing of Microblogging Texts for Opinion Polling on Chinese Public Figures, Applied Intelligence, Vol. 45, No. 2, pp. 429-442, September, 2016.
-
(2016)
Applied Intelligence
, vol.45
, Issue.2
, pp. 429-442
-
-
Cheng, J.1
Zhang, X.2
Li, P.3
Zhang, S.4
Ding, Z.5
Wang, H.6
-
16
-
-
84878402147
-
LSTM neural networks for language modeling
-
M. Sundermeyer, R. Schlüter and H. Ney, LSTM Neural Networks for Language Modeling, 13th Annual Conference of the International Speech Communication Association, Portland, OR, 2012, pp. 194-197.
-
(2012)
13th Annual Conference of the International Speech Communication Association, Portland, or
, pp. 194-197
-
-
Sundermeyer, M.1
Schlüter, R.2
Ney, H.3
-
17
-
-
85090890113
-
Coooolll: A deep learning system for twitter sentiment classification
-
D. Tang, F. Wei, B. Qin, T. Liu and M. Zhou, Coooolll: A Deep Learning System for Twitter Sentiment Classifi cation, 8th International Workshop on Semantic Evaluation, Dublin, Ireland, 2014, pp. 208-212.
-
(2014)
8th International Workshop On Semantic Evaluation, Dublin, Ireland
, pp. 208-212
-
-
Tang, D.1
Wei, F.2
Qin, B.3
Liu, T.4
Zhou, M.5
-
18
-
-
56449119888
-
Deep Learning via Semi-supervised embedding
-
J, Weston, F. Ratle and R. Collobert, Deep Learning via Semi-supervised Embedding, 25th International Conference on Machine Learning, Helsinki, Finland, 2008, pp. 1168-1175.
-
(2008)
25th International Conference On Machine Learning, Helsinki, Finland
, pp. 1168-1175
-
-
Ratle, W.F.1
Collobert, R.2
-
19
-
-
80053261327
-
Semi-supervised recursive autoencoders for predicting sentiment distributions
-
R. Socher, J. Pennington, E. H. Huang, A. Y. Ng and C. D. Manning, Semi-supervised Recursive Autoencoders for Predicting Sentiment Distributions, Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, 2011, pp. 151-161.
-
(2011)
Conference On Empirical Methods in Natural Language Processing, Edinburgh, UK
, pp. 151-161
-
-
Socher, R.1
Pennington, J.2
Huang, E.H.3
Ng, A.Y.4
Manning, C.D.5
-
20
-
-
84908157393
-
Evaluation datasets for twitter sentiment analysis: A survey and a new dataset, the STS-gold
-
H. Saif, M. Fernández, Y. He and H. Alani, Evaluation Datasets for Twitter Sentiment Analysis: A Survey and a New Dataset, the STS-gold, First International Workshop on Emotion and Sentiment in Social and Expressive Media: Approaches and Perspectives from AI, Turin, Italy, 2013, pp. 9-21.
-
(2013)
First International Workshop On Emotion and Sentiment in Social and Expressive Media: Approaches and Perspectives from AI, Turin, Italy
, pp. 9-21
-
-
Saif, H.1
Fernández, M.2
He, Y.3
Alani, H.4
-
21
-
-
84929471718
-
Incremental learning for ?-Support vector regression
-
July
-
B. Gu, V. S. Sheng, Z. Wang, D. Ho, S. Osman and S. Li, Incremental Learning for ?-Support Vector Regression, Neural Networks, Vol. 67, No. C, pp. 140-150, July, 2015.
-
(2015)
Neural Networks
, vol.67
, Issue.100
, pp. 140-150
-
-
Gu, B.1
Sheng, V.S.2
Wang, Z.3
Ho, D.4
Osman, S.5
Li, S.6
-
22
-
-
85028203782
-
Incremental support vector learning for ordinal regression
-
July
-
B. Gu, V. S. Sheng, K. Y. Tay, W. Romano and S. Li, Incremental Support Vector Learning for Ordinal Regression, IEEE Transactions on Neural Networks and Learning Systems, Vol. 26, No. 7, pp. 1403-1416, July, 2015.
-
(2015)
IEEE Transactions On Neural Networks and Learning Systems
, vol.26
, Issue.7
, pp. 1403-1416
-
-
Gu, B.1
Sheng, V.S.2
Tay, K.Y.3
Romano, W.4
Li, S.5
-
23
-
-
84959421728
-
A robust regularization path algorithm for ?-support vector classification
-
May
-
B. Gu and V. S. Sheng, A Robust Regularization Path Algorithm for ?-Support Vector Classifi cation, IEEE Transactions on Neural Networks and Learning Systems, Vol. 28, No. 5, pp. 1241-1248, May, 2017.
-
(2017)
IEEE Transactions On Neural Networks and Learning Systems
, vol.28
, Issue.5
, pp. 1241-1248
-
-
Gu, B.1
Sheng, V.S.2
-
24
-
-
84963962002
-
Structural minimax probability machine
-
July
-
B. Gu, X. Sun and V. S. Sheng, Structural Minimax Probability Machine, IEEE Transactions on Neural Networks and Learning Systems, Vol. 28, No. 7, pp. 1646-1656, July, 2017.
-
(2017)
IEEE Transactions On Neural Networks and Learning Systems
, vol.28
, Issue.7
, pp. 1646-1656
-
-
Gu, B.1
Sun, X.2
Sheng, V.S.3
-
25
-
-
84922323888
-
A novel routing protocol providing good transmission reliability in underwater sensor networks
-
January
-
J. Shen, H. W. Tan, J. Wang, J. W. Wang and S. Y. Lee, A Novel Routing Protocol Providing Good Transmission Reliability in Underwater Sensor Networks, Journal of Internet Technology, Vol. 16, No. 1, pp. 171-178, January, 2015.
-
(2015)
Journal of Internet Technology
, vol.16
, Issue.1
, pp. 171-178
-
-
Shen, J.1
Tan, H.W.2
Wang, J.3
Wang, J.W.4
Lee, S.Y.5
-
26
-
-
84912557332
-
Twitter polarity classification with label propagation over lexical links and the follower graph
-
M. Speriosu, N. Sudan, S. Upadhyay and J. Baldridge, Twitter Polarity Classifi cation with Label Propagation over Lexical Links and the Follower Graph, EMNLP ?11 First Workshop on Unsupervised Learning in NLP, Edinburgh, Scotland, 2011, pp. 53-63.
-
(2011)
EMNLP ?11 First Workshop On Unsupervised Learning in NLP, Edinburgh, Scotland
, pp. 53-63
-
-
Speriosu, M.1
Sudan, N.2
Upadhyay, S.3
Baldridge, J.4
-
27
-
-
83655167217
-
Sentiment strength detection for the social web
-
January
-
M. Thelwall, K. Buckley and G. Paltoglou, Sentiment Strength Detection for the Social Web, Journal of the Society for Information Science and Technology, Vol. 63, No. 1, pp. 163-173, January, 2012.
-
(2012)
Journal of the Society for Information Science and Technology
, vol.63
, Issue.1
, pp. 163-173
-
-
Thelwall, M.1
Buckley, K.2
Paltoglou, G.3
|