메뉴 건너뛰기




Volumn 15, Issue 3, 2018, Pages 465-468

Deep Recurrent Neural Networks for Winter Vegetation Quality Mapping via Multitemporal SAR Sentinel-1

Author keywords

Gated recurrent unit (GRU); long short term memory (LSTM); multitemporal; recurrent neural network (RNN); Sentinel 1; synthetic aperture radar (SAR); vegetation quality

Indexed keywords

DECISION TREES; DEEP NEURAL NETWORKS; GEOMETRICAL OPTICS; MAPPING; RADAR IMAGING; REMOTE SENSING; SYNTHETIC APERTURE RADAR; VEGETATION;

EID: 85041386709     PISSN: 1545598X     EISSN: 15580571     Source Type: Journal    
DOI: 10.1109/LGRS.2018.2794581     Document Type: Article
Times cited : (99)

References (20)
  • 1
    • 0034938561 scopus 로고    scopus 로고
    • The EU water framework directive: Measures and implications
    • G. Kallis and D. Butler, "The EU water framework directive: Measures and implications," Water Policy, vol. 3, no. 2, pp. 125-142, 2001.
    • (2001) Water Policy , vol.3 , Issue.2 , pp. 125-142
    • Kallis, G.1    Butler, D.2
  • 2
    • 84871773278 scopus 로고    scopus 로고
    • The potential to reduce the risk of diffuse pollution from agriculture while improving economic performance at farm level
    • C. Buckley and P. Carney, "The potential to reduce the risk of diffuse pollution from agriculture while improving economic performance at farm level," Environ. Sci. Policy, vol. 25, no. 1, pp. 118-126, 2013.
    • (2013) Environ. Sci. Policy , vol.25 , Issue.1 , pp. 118-126
    • Buckley, C.1    Carney, P.2
  • 3
  • 4
    • 84863393480 scopus 로고    scopus 로고
    • GMES Sentinel-1 mission
    • May
    • R. Torres et al., "GMES Sentinel-1 mission," Remote Sens. Environ., vol. 120, pp. 9-24, May 2012.
    • (2012) Remote Sens. Environ. , vol.120 , pp. 9-24
    • Torres, R.1
  • 5
    • 84971492749 scopus 로고    scopus 로고
    • Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series
    • J. Inglada, A. Vincent, M. Arias, and C. Marais-Sicre, "Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series," Remote Sens., vol. 8, no. 5, p. 362, 2016.
    • (2016) Remote Sens. , vol.8 , Issue.5 , pp. 362
    • Inglada, J.1    Vincent, A.2    Arias, M.3    Marais-Sicre, C.4
  • 6
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 7
    • 0000370416 scopus 로고    scopus 로고
    • LSTM can solve hard long time lag problems
    • S. Hochreiter and J. Schmidhuber, "LSTM can solve hard long time lag problems," in Proc. NIPS, 1996, pp. 473-479.
    • (1996) Proc. NIPS , pp. 473-479
    • Hochreiter, S.1    Schmidhuber, J.2
  • 9
    • 0035509499 scopus 로고    scopus 로고
    • Filtering of multichannel SAR images
    • Nov
    • S. Quegan and J. J. Yu, "Filtering of multichannel SAR images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 11, pp. 2373-2379, Nov. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.11 , pp. 2373-2379
    • Quegan, S.1    Yu, J.J.2
  • 10
    • 84988476685 scopus 로고    scopus 로고
    • TomoSAR platform: The new Irstea service as demand for SAR, interferometry, polarimetry and tomography
    • D. H. T. Minh, Y.-N. Ngo, N. Baghdadi, and P. Maurel, "TomoSAR platform: The new Irstea service as demand for SAR, interferometry, polarimetry and tomography," in Proc. ESA Living Planet Symp., 2016, pp. 1-8.
    • (2016) Proc. ESA Living Planet Symp. , pp. 1-8
    • Minh, D.H.T.1    Ngo, Y.-N.2    Baghdadi, N.3    Maurel, P.4
  • 11
    • 84928004000 scopus 로고    scopus 로고
    • Simultaneous multichannel signal transfers via chaos in a recurrent neural network
    • K. Soma, R. Mori, R. Sato, N. Furumai, and S. Nara, "Simultaneous multichannel signal transfers via chaos in a recurrent neural network," Neural Comput., vol. 27, no. 5, pp. 1083-1101, 2015.
    • (2015) Neural Comput. , vol.27 , Issue.5 , pp. 1083-1101
    • Soma, K.1    Mori, R.2    Sato, R.3    Furumai, N.4    Nara, S.5
  • 12
    • 85021663297 scopus 로고    scopus 로고
    • Assessing the ability of LSTMs to learn syntax-sensitive dependencies
    • T. Linzen, E. Dupoux, and Y. Goldberg, "Assessing the ability of LSTMs to learn syntax-sensitive dependencies," in Proc. TACL, vol. 4. 2016, pp. 521-535.
    • (2016) Proc. TACL , vol.4 , pp. 521-535
    • Linzen, T.1    Dupoux, E.2    Goldberg, Y.3
  • 13
    • 84961291190 scopus 로고    scopus 로고
    • Learning phrase representations using RNN encoderdecoder for statistical machine translation
    • K. Cho et al., "Learning phrase representations using RNN encoderdecoder for statistical machine translation," in Proc. EMNLP, 2014, pp. 1724-1734.
    • (2014) Proc. EMNLP , pp. 1724-1734
    • Cho, K.1
  • 14
    • 84890543083 scopus 로고    scopus 로고
    • Speech recognition with deep recurrent neural networks
    • May
    • A. Graves, A.-R. Mohamed, and G. E. Hinton, "Speech recognition with deep recurrent neural networks," in Proc. ICASSP, May 2013, pp. 6645-6649.
    • (2013) Proc. ICASSP , pp. 6645-6649
    • Graves, A.1    Mohamed, A.-R.2    Hinton, G.E.3
  • 15
    • 85028167248 scopus 로고    scopus 로고
    • Analysis of multitemporal classification techniques for forecasting image time series
    • May
    • R. Flamary, M. Fauvel, M. D. Mura, and S. Valero, "Analysis of multitemporal classification techniques for forecasting image time series," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 5, pp. 953-957, May 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.5 , pp. 953-957
    • Flamary, R.1    Fauvel, M.2    Mura, M.D.3    Valero, S.4
  • 16
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • Oct
    • F. Pedregosa et al., "Scikit-learn: Machine learning in Python," J. Mach. Learn. Res., vol. 12, pp. 2825-2830, Oct. 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 17
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1-27:27, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 271-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 18
    • 84971640658 scopus 로고    scopus 로고
    • F. Chollet. (2015). keras. [Online]. Available: https://github.com/fchollet/ keras
    • (2015) Keras
    • Chollet, F.1
  • 20
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • Jun
    • L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: A technical tutorial on the state of the art," IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 22-40, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.