메뉴 건너뛰기




Volumn 27, Issue 1, 2018, Pages 298-311

Bayesian joint modeling for assessing the progression of chronic kidney disease in children

Author keywords

Competing risks; Left truncation; Longitudinal data; Non ignorable dropout; Random effect joint models

Indexed keywords

ARTICLE; BAYES THEOREM; CALCULATION; CHILD; CHILDHOOD; CHRONIC KIDNEY FAILURE; DISEASE COURSE; ESTIMATED GLOMERULAR FILTRATION RATE; HUMAN; MATHEMATICAL MODEL; PREDICTION; STATISTICAL MODEL; SURVIVAL; DISEASE EXACERBATION; PATHOLOGY; PRESCHOOL CHILD; SURVIVAL ANALYSIS;

EID: 85041385408     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280216628560     Document Type: Article
Times cited : (17)

References (45)
  • 1
    • 62149125881 scopus 로고    scopus 로고
    • Mun˜ oz A, Schneider M, et al. New equations to estimate GFR in children with CKD
    • Schwartz G, Mun˜ oz A, Schneider M, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol 2009; 20: 629–637.
    • (2009) J am Soc Nephrol , vol.20 , pp. 629-637
    • Schwartz, G.1
  • 2
    • 0038654272 scopus 로고    scopus 로고
    • National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: Evaluation, classification, and stratification
    • Hogg R, Furth S, Lemley K, et al. National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics 2003; 6: 1416–1421.
    • (2003) Pediatrics , Issue.6 , pp. 1416-1421
    • Hogg, R.1    Furth, S.2    Lemley, K.3
  • 3
    • 84866755858 scopus 로고    scopus 로고
    • The epidemic of pediatric chronic kidney disease: The danger of skepticism
    • Assadi F. The epidemic of pediatric chronic kidney disease: the danger of skepticism. J Nephropathol 2012; 2: 61–64.
    • (2012) J Nephropathol , Issue.2 , pp. 61-64
    • Assadi, F.1
  • 4
    • 4644221457 scopus 로고    scopus 로고
    • Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization
    • Go A, Chertow G, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. New Engl J Med 2004; 351: 1296–1305.
    • (2004) New Engl J Med , vol.351 , pp. 1296-1305
    • Go, A.1    Chertow, G.2    Fan, D.3
  • 5
    • 36049021815 scopus 로고    scopus 로고
    • Chronic kidney disease in children: The global perspective
    • Warady B and Chadha V. Chronic kidney disease in children: the global perspective. Pediatr Nephrol 2007; 22: 1999–2009.
    • (2007) Pediatr Nephrol , vol.22 , pp. 1999-2009
    • Warady, B.1    Chadha, V.2
  • 6
    • 77951259042 scopus 로고    scopus 로고
    • Etiology and treatment of growth retardation in children with chronic kidney disease and end-stage renal disease: A historical perspective
    • Fine R. Etiology and treatment of growth retardation in children with chronic kidney disease and end-stage renal disease: a historical perspective. Pediatr Nephrol 2010; 25: 725–732.
    • (2010) Pediatr Nephrol , vol.25 , pp. 725-732
    • Fine, R.1
  • 9
    • 8644246036 scopus 로고    scopus 로고
    • Modeling of longitudinal and time-to-event data: An overview
    • Tsiatis AA and Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Stat Sin 2004; 14: 809–834.
    • (2004) Stat Sin , vol.14 , pp. 809-834
    • Tsiatis, A.A.1    Joint, D.M.2
  • 11
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modelling the censoring processor
    • Wu MC and Carroll RJ. Estimation and comparison of changes in the presence of informative right censoring by modelling the censoring processor. Biometrics 1988; 44: 175–188.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • Wu, M.C.1    Carroll, R.J.2
  • 12
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • Wulfsohn MS and Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics 1997; 53: 330–339.
    • (1997) Biometrics , vol.53 , pp. 330-339
    • Wulfsohn, M.S.1    Tsiatis, A.A.2
  • 13
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • Henderson R, Diggle PJ and Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics 2000; 4: 465–480.
    • (2000) Biostatistics , Issue.4 , pp. 465-480
    • Henderson, R.1    Diggle, P.J.2    Dobson, A.3
  • 15
    • 0027166881 scopus 로고
    • Kaplan–Meier, marginal, or conditional probability curves in summarizing competing risks failure time data?
    • Pepe MS and Mori M. Kaplan–Meier, marginal, or conditional probability curves in summarizing competing risks failure time data? Stat Med 1993; 12: 737–751.
    • (1993) Stat Med , vol.12 , pp. 737-751
    • Pepe, M.S.1    Mori, M.2
  • 16
    • 34248397713 scopus 로고    scopus 로고
    • Tutorial in biostatistics: Competing risks and multi-state models
    • Putter H, Fiocco M and Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med 2007; 26: 2389–2430.
    • (2007) Stat Med , vol.26 , pp. 2389-2430
    • Putter, H.1    Fiocco, M.2    Geskus, R.B.3
  • 17
    • 79952983541 scopus 로고    scopus 로고
    • Empirical transition matrix of multistate models: The etm package
    • Allignol A, Schumacher M and Beyersmann J. Empirical transition matrix of multistate models: the etm package. J Stat Softw 2011; 38: 1–15.
    • (2011) J Stat Softw , vol.38 , pp. 1-15
    • Allignol, A.1    Schumacher, M.2    Beyersmann, J.3
  • 18
    • 85041386065 scopus 로고    scopus 로고
    • Package joineR. Joint modelling of repeated measurements and time-to-event data
    • Philipson P, Sousa I, Diggle P, et al. Package joineR. Joint modelling of repeated measurements and time-to-event data. Version 1.0-3, 2013.
    • (2013) Version , vol.1 , pp. 0-3
    • Philipson, P.1    Sousa, I.2    Diggle, P.3
  • 20
    • 33645059153 scopus 로고    scopus 로고
    • Random changepoint model for joint modeling of cognitive decline and dementia
    • Jacqmin-Gadda H, Commenges D and Dartigues JF. Random changepoint model for joint modeling of cognitive decline and dementia. Biometrics 2006; 62: 254–260.
    • (2006) Biometrics , vol.62 , pp. 254-260
    • Jacqmin-Gadda, H.1    Commenges, D.2    Dartigues, J.F.3
  • 21
    • 49749119975 scopus 로고    scopus 로고
    • A joint model for longitudinal measurements and survival data in the presence of multiple failure types
    • Elashoff R, Li G and Li N. A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 2008; 64: 762–771.
    • (2008) Biometrics , vol.64 , pp. 762-771
    • Elashoff, R.1    Li, G.2    Li, N.3
  • 22
    • 63249095015 scopus 로고    scopus 로고
    • Joint modelling of longitudinal and competing risks data
    • Williamson P, Kolamunnage-Dona R, Philipson P, et al. Joint modelling of longitudinal and competing risks data. Stat Med 2008; 27: 6426–6438.
    • (2008) Stat Med , vol.27 , pp. 6426-6438
    • Williamson, P.1    Kolamunnage-Dona, R.2    Philipson, P.3
  • 23
    • 76749116117 scopus 로고    scopus 로고
    • Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial
    • Li N, Elashoff RM, Li G, et al. Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial. Stat Med 2010; 29: 546–557.
    • (2010) Stat Med , vol.29 , pp. 546-557
    • Li, N.1    Elashoff, R.M.2    Li, G.3
  • 24
    • 84903818599 scopus 로고    scopus 로고
    • Joint modeling of two longitudinal outcomes and competing risk data
    • Andrinopoulou ER, Rizopoulos D, Takkenberg JJM, et al. Joint modeling of two longitudinal outcomes and competing risk data. Stat Med 2014; 33: 3167–3178.
    • (2014) Stat Med , vol.33 , pp. 3167-3178
    • Andrinopoulou, E.R.1    Rizopoulos, D.2    Takkenberg, J.J.M.3
  • 25
    • 85031694458 scopus 로고    scopus 로고
    • Bayesian nonparametric mixed-effects joint model for longitudinal-competing risks data analysis in presence of multiple data features
    • Lu T. Bayesian nonparametric mixed-effects joint model for longitudinal-competing risks data analysis in presence of multiple data features. Stat Meth Med Res 2017; 26: 2407–2423.
    • (2017) Stat Meth Med Res , vol.26 , pp. 2407-2423
    • Lu, T.1
  • 27
    • 77956888877 scopus 로고
    • A comparison of hazard rate estimators for left truncated and right censored data
    • Uzunogullari U and Wang JL. A comparison of hazard rate estimators for left truncated and right censored data. Biometrika 1992; 79: 297–310.
    • (1992) Biometrika , vol.79 , pp. 297-310
    • Uzunogullari, U.1    Wang, J.L.2
  • 28
    • 1342289473 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and event time data using standard computer packages
    • Guo X and Carlin BP. Separate and joint modeling of longitudinal and event time data using standard computer packages. Am Stat 2004; 58: 1–9.
    • (2004) Am Stat , vol.58 , pp. 1-9
    • Guo, X.1    Separate, C.B.P.2
  • 30
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman A and Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci 1992; 7: 457–472.
    • (1992) Stat Sci , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 32
    • 0442327792 scopus 로고    scopus 로고
    • Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome
    • Wang Y and Taylor JMG. Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. J Am Stat Assoc 2001; 455: 895–905.
    • (2001) J am Stat Assoc , Issue.455 , pp. 895-905
    • Wang, Y.1    Taylor, J.M.G.2
  • 33
  • 37
    • 80052787679 scopus 로고    scopus 로고
    • Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data
    • Rizopoulos D. Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics 2011; 67: 819–829.
    • (2011) Biometrics , vol.67 , pp. 819-829
    • Rizopoulos, D.1
  • 38
    • 84875937581 scopus 로고    scopus 로고
    • Real-time individual predictions of prostate cancer recurrence using joint models
    • Taylor JMG, Park Y, Ankerst DP, et al. Real-time individual predictions of prostate cancer recurrence using joint models. Biometrics 2013; 69: 206–213.
    • (2013) Biometrics , vol.69 , pp. 206-213
    • Taylor, J.M.G.1    Park, Y.2    Ankerst, D.P.3
  • 39
    • 0001135785 scopus 로고
    • Sampling and Bayes inference in scientific modeling and robustness (With discussion)
    • Box G. Sampling and Bayes inference in scientific modeling and robustness (with discussion). J R Stat Assoc A 1980; 143: 382–430.
    • (1980) J R Stat Assoc A , vol.143 , pp. 382-430
    • Box, G.1
  • 41
    • 60649121877 scopus 로고    scopus 로고
    • Identifying outliers in Bayesian hierarchical models: A simulation-based approach
    • Marshall EC and Spiegelhalter DJ. Identifying outliers in Bayesian hierarchical models: a simulation-based approach. Bayesian Anal 2007; 2: 409–444.
    • (2007) Bayesian Anal , vol.2 , pp. 409-444
    • Marshall, E.C.1    Spiegelhalter, D.J.2
  • 42
    • 84950459427 scopus 로고
    • Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers
    • Lange N, Carlin BP and Gelfand AE. Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers. J Am Stat Assoc 1992; 87: 325–626.
    • (1992) J am Stat Assoc , vol.87 , pp. 325-626
    • Lange, N.1    Carlin, B.P.2    Gelfand, A.E.3
  • 43
    • 84950459427 scopus 로고
    • Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers
    • Lange N, Carlin BP and Gelfand AE. Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers. J Am Stat Assoc 1992; 87: 325–626.
    • (1992) J am Stat Assoc , vol.87 , pp. 325-626
    • Lange, N.1    Carlin, B.P.2    Gelfand, A.E.3
  • 44
    • 0022594196 scopus 로고
    • An introduction to hidden Markov models
    • Rabiner L and Juang B. An introduction to hidden Markov models. IEEE ASSP Magazine 1986; 3: 4–16.
    • (1986) IEEE ASSP Magazine , vol.3 , pp. 4-16
    • Rabiner, L.1    Juang, B.2
  • 45
    • 85041391577 scopus 로고    scopus 로고
    • S. Finite mixture and Markov switching models
    • Fru¨ hwirth-Snatter S. Finite mixture and Markov switching models. New York: Springer, 2006.
    • (2006) New York: Springer
    • Hwirth-Snatter, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.