메뉴 건너뛰기




Volumn 26, Issue 5, 2017, Pages 2407-2423

Bayesian nonparametric mixed-effects joint model for longitudinal-competing risks data analysis in presence of multiple data features

Author keywords

AIDS study; Bayesian inference; competing risk; detection limit; longitudinal data; measurement error; mixed effects models; skew distribution; survival data; varying coefficient hazard models

Indexed keywords

ACCURACY; ACQUIRED IMMUNE DEFICIENCY SYNDROME; ALGORITHM; ARTICLE; BAYES THEOREM; CD4 LYMPHOCYTE COUNT; DATA ANALYSIS; HISTOGRAM; HUMAN; LIMIT OF DETECTION; MEASUREMENT ERROR; NUCLEOTIDE SEQUENCE; RELIABILITY; RISK ASSESSMENT; SURVIVAL RATE; VIRUS LOAD; DRUG EFFECT; HUMAN IMMUNODEFICIENCY VIRUS INFECTION; LONGITUDINAL STUDY; MALE; NONPARAMETRIC TEST; PROPORTIONAL HAZARDS MODEL; RISK FACTOR; STATISTICAL ANALYSIS; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA; SURVIVAL ANALYSIS; TREATMENT OUTCOME; VIROLOGY;

EID: 85031694458     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280215597939     Document Type: Article
Times cited : (4)

References (25)
  • 1
    • 0029763749 scopus 로고    scopus 로고
    • Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach
    • Faucett CL, Thomas DC,. Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Stat Med 1996; 15: 1663-1685.
    • (1996) Stat Med , vol.15 , pp. 1663-1685
    • Faucett, C.L.1    Thomas, D.C.2
  • 2
    • 0036966285 scopus 로고    scopus 로고
    • A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data
    • Song X, Davidian M, Tsiatis AA,. A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 2002; 58: 742-753.
    • (2002) Biometrics , vol.58 , pp. 742-753
    • Song, X.1    Davidian, M.2    Tsiatis, A.A.3
  • 3
    • 0037869564 scopus 로고    scopus 로고
    • A Bayesian semiparametric joint hierarchical model for longitudinal and survival data
    • Brown ER, Ibrahim JG,. A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics 2003; 59: 221-228.
    • (2003) Biometrics , vol.59 , pp. 221-228
    • Brown, E.R.1    Ibrahim, J.G.2
  • 4
    • 49749119975 scopus 로고    scopus 로고
    • A joint model for longitudinal measurements and survival data in the presence of multiple failure types
    • Elashoff RM, Li G, Li N,. A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 2008; 64: 762-771.
    • (2008) Biometrics , vol.64 , pp. 762-771
    • Elashoff, R.M.1    Li, G.2    Li, N.3
  • 5
    • 67649945929 scopus 로고    scopus 로고
    • A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data
    • Hu W, Li G, Li N,. A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data. Stat Med 2009; 28: 1601-1619.
    • (2009) Stat Med , vol.28 , pp. 1601-1619
    • Hu, W.1    Li, G.2    Li, N.3
  • 6
    • 78651422985 scopus 로고    scopus 로고
    • A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects
    • Huang X, Li G, Elashoff R, et al. A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects. Lifetime Data Anal 2011; 17: 80-100.
    • (2011) Lifetime Data Anal , vol.17 , pp. 80-100
    • Huang, X.1    Li, G.2    Elashoff, R.3
  • 7
    • 84862853440 scopus 로고    scopus 로고
    • Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects
    • Li N, Elashoff RM, Li G, et al. Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects. Stat Med 2012; 31: 1707-1721.
    • (2012) Stat Med , vol.31 , pp. 1707-1721
    • Li, N.1    Elashoff, R.M.2    Li, G.3
  • 8
    • 0242595939 scopus 로고    scopus 로고
    • A new class of multivariate skew distributions with applications to Bayesian regression models
    • Sahu S, Dey D, Branco M,. A new class of multivariate skew distributions with applications to Bayesian regression models. Can J Stat 2003; 31: 129-150.
    • (2003) Can J Stat , vol.31 , pp. 129-150
    • Sahu, S.1    Dey, D.2    Branco, M.3
  • 9
    • 77956283939 scopus 로고    scopus 로고
    • Robust linear mixed models using the skew-t distribution with application to schizophrenia data
    • Ho H, Lin T,. Robust linear mixed models using the skew-t distribution with application to schizophrenia data. Biometr J 2010; 52: 449-469.
    • (2010) Biometr J , vol.52 , pp. 449-469
    • Ho, H.1    Lin, T.2
  • 10
    • 79952590669 scopus 로고    scopus 로고
    • A Bayesian approach to joint mixed-effects models with a skew-normal distribution and measurement errors in covariates
    • Huang Y, Dagne G,. A Bayesian approach to joint mixed-effects models with a skew-normal distribution and measurement errors in covariates. Biometrics 2011; 67: 260-269.
    • (2011) Biometrics , vol.67 , pp. 260-269
    • Huang, Y.1    Dagne, G.2
  • 11
    • 83655180965 scopus 로고    scopus 로고
    • Linear and nonlinear mixed-effects models for censored HIV viral loads using normal/independent distributions
    • Lachos V, Bandyopadhyay D, Dey D,. Linear and nonlinear mixed-effects models for censored HIV viral loads using normal/independent distributions. Biometrics 2011; 67: 1594-1604.
    • (2011) Biometrics , vol.67 , pp. 1594-1604
    • Lachos, V.1    Bandyopadhyay, D.2    Dey, D.3
  • 12
    • 84907611739 scopus 로고    scopus 로고
    • Mixed-effects joint models with skew-normal distribution for HIV dynamic response with missing and mismeasured time-varying covariate
    • 34-Article 34
    • Huang Y, Chen J, Yan C,. Mixed-effects joint models with skew-normal distribution for HIV dynamic response with missing and mismeasured time-varying covariate. Int J Biostat 2012; 8: Article 34-Article 34.
    • (2012) Int J Biostat , vol.8 , pp. Article
    • Huang, Y.1    Chen, J.2    Yan, C.3
  • 13
    • 84862230773 scopus 로고    scopus 로고
    • Skew-normal/independent linear mixed models for censored responses with applications to HIV viral loads
    • Bandyopadhyay D, Lachos V, Castro L, et al. Skew-normal/independent linear mixed models for censored responses with applications to HIV viral loads. Biometr J 2012; 54: 405-425.
    • (2012) Biometr J , vol.54 , pp. 405-425
    • Bandyopadhyay, D.1    Lachos, V.2    Castro, L.3
  • 15
  • 16
    • 41849143354 scopus 로고    scopus 로고
    • Robust likelihood methods based on the skew-t and related distributions
    • Azzalini A, Genton M,. Robust likelihood methods based on the skew-t and related distributions. Int Stat Rev 2008; 76: 106-129.
    • (2008) Int Stat Rev , vol.76 , pp. 106-129
    • Azzalini, A.1    Genton, M.2
  • 17
    • 46549086432 scopus 로고    scopus 로고
    • Linear mixed models with skew-elliptical distributions: A Bayesian approach
    • Jara A, Quintana F, Martin E,. Linear mixed models with skew-elliptical distributions: A Bayesian approach. Comput Stat Data Anal 2008; 52: 5033-5045.
    • (2008) Comput Stat Data Anal , vol.52 , pp. 5033-5045
    • Jara, A.1    Quintana, F.2    Martin, E.3
  • 19
    • 0036970596 scopus 로고    scopus 로고
    • A joint model for nonlinear mixed-effects models with censoring and covariates measured with error
    • Wu L,. A joint model for nonlinear mixed-effects models with censoring and covariates measured with error. J Am Stat Assoc 2002; 97: 955-964.
    • (2002) J Am Stat Assoc , vol.97 , pp. 955-964
    • Wu, L.1
  • 20
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS-A Bayesian modelling framework: Concepts, structure, an extensibility
    • Lunn D, Thomas A, Best N, et al. WinBUGS-A Bayesian modelling framework: concepts, structure, an extensibility. Stat Comput 2000; 10: 325-337.
    • (2000) Stat Comput , vol.10 , pp. 325-337
    • Lunn, D.1    Thomas, A.2    Best, N.3
  • 21
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman A, Rubin D,. Inference from iterative simulation using multiple sequences. Stat Sci 1992; 7: 457-511.
    • (1992) Stat Sci , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.2
  • 22
    • 70450277983 scopus 로고    scopus 로고
    • Deviance information criteria for missing data models
    • Celeux G, Forbes F, Robert C, et al. Deviance information criteria for missing data models. Bayes Anal 2006; 1: 651-674.
    • (2006) Bayes Anal , vol.1 , pp. 651-674
    • Celeux, G.1    Forbes, F.2    Robert, C.3
  • 24
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson TS,. A Bayesian analysis of some nonparametric problems. Ann Stat 1973; 1: 209-230.
    • (1973) Ann Stat , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 25
    • 21344479762 scopus 로고
    • Estimating normal means with a Dirichlet process prior
    • Escobar MD,. Estimating normal means with a Dirichlet process prior. J Am Stat Assoc 1994; 89: 268-277.
    • (1994) J Am Stat Assoc , vol.89 , pp. 268-277
    • Escobar, M.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.