메뉴 건너뛰기




Volumn 32, Issue 3, 2018, Pages 425-449

Mapping spatiotemporal patterns of events using social media: a case study of influenza trends

Author keywords

CyberGIS; event detection; influenza surveillance; social media; spatiotemporal analysis

Indexed keywords

DETECTION METHOD; DISEASE INCIDENCE; DISEASE PREVALENCE; DISEASE SPREAD; GIS; INFLUENZA; MEDIA ROLE; SOCIAL MEDIA; SPATIOTEMPORAL ANALYSIS; TREND ANALYSIS;

EID: 85041135960     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2017.1406943     Document Type: Article
Times cited : (50)

References (66)
  • 1
    • 79960609227 scopus 로고    scopus 로고
    • Predicting flu trends using Twitter data
    • 10-15April 2011, Shanghai, China. Washington, DC: IEEE, et al,. In
    • Achrekar, H., et al., 2011. Predicting flu trends using Twitter data. In: 2011 IEEE Conference on Computer Communications Workshops, 10-15April 2011 Shanghai, China. Washington, DC: IEEE. 702–707.
    • (2011) 2011 IEEE Conference on Computer Communications Workshops , pp. 702-707
    • Achrekar, H.1
  • 2
    • 84930039252 scopus 로고    scopus 로고
    • A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management
    • et al
    • Albuquerque, J.P., et al., 2015. A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management. International Journal of Geographical Information Science, 29 (4), 667–689. doi:10.1080/13658816.2014.996567
    • (2015) International Journal of Geographical Information Science , vol.29 , Issue.4 , pp. 667-689
    • Albuquerque, J.P.1
  • 3
    • 80053290412 scopus 로고    scopus 로고
    • Twitter catches the flu: detecting influenza epidemics using Twitter
    • 27-31July 2011, Edinburgh, United Kingdom. Stroudsburg, PA, USA: Association for Computational Linguistics, and,. In: M. Lapata and H. T. Ng, eds
    • Aramaki, E., Maskawa, S., and Morita, M., 2011. Twitter catches the flu: detecting influenza epidemics using Twitter. In: M. Lapata and H. T. Ng, eds. Proceedings of the Conference on Empirical Methods in Natural Language Processing, 27-31July 2011 Edinburgh, United Kingdom. Stroudsburg, PA, USA: Association for Computational Linguistics. 1568–1576.
    • (2011) Proceedings of the Conference on Empirical Methods in Natural Language Processing , pp. 1568-1576
    • Aramaki, E.1    Maskawa, S.2    Morita, M.3
  • 4
    • 84914695342 scopus 로고    scopus 로고
    • The reliability of tweets as a supplementary method of seasonal influenza surveillance
    • et al
    • Aslam, A.A., et al., 2014. The reliability of tweets as a supplementary method of seasonal influenza surveillance. Journal of Medical Internet Research, 16 (11). doi:10.2196/jmir.3532
    • (2014) Journal of Medical Internet Research , vol.16 , Issue.11
    • Aslam, A.A.1
  • 7
    • 0025308637 scopus 로고
    • An application of density estimation to geographical epidemiology
    • Bithell, J.F., 1990. An application of density estimation to geographical epidemiology. Statistics in Medicine, 9 (6), 691–701. doi:10.1002/(ISSN)1097-0258
    • (1990) Statistics in Medicine , vol.9 , Issue.6 , pp. 691-701
    • Bithell, J.F.1
  • 8
    • 0025937712 scopus 로고
    • Estimation of relative risk functions
    • Bithell, J.F., 1991. Estimation of relative risk functions. Statistics in Medicine, 10 (11), 1745–1751. doi:10.1002/(ISSN)1097-0258
    • (1991) Statistics in Medicine , vol.10 , Issue.11 , pp. 1745-1751
    • Bithell, J.F.1
  • 9
    • 79953102821 scopus 로고    scopus 로고
    • Twitter mood predicts the stock market
    • Bollen, J., Mao, H., and Zeng, X., 2011. Twitter mood predicts the stock market. Journal of Computational Science, 2 (1), 1–8. doi:10.1016/j.jocs.2010.12.007
    • (2011) Journal of Computational Science , vol.2 , Issue.1 , pp. 1-8
    • Bollen, J.1    Mao, H.2    Zeng, X.3
  • 10
    • 84922628529 scopus 로고    scopus 로고
    • A scalable framework for spatiotemporal analysis of location-based social media data
    • et al
    • Cao, G., et al., 2015. A scalable framework for spatiotemporal analysis of location-based social media data. Computers, Environment and Urban Systems, 51, 70–82. doi:10.1016/j.compenvurbsys.2015.01.002
    • (2015) Computers, Environment and Urban Systems , vol.51 , pp. 70-82
    • Cao, G.1
  • 13
    • 85041137481 scopus 로고    scopus 로고
    • Available from, Accessed 03March 2015
    • Centers for Disease Control and Prevention (CDC), 2011. Cold Versus Flu [online]. Available from: http://www.cdc.gov/flu/about/qa/coldflu.htm [Accessed 03March 2015]
    • (2011) Cold Versus Flu [online]
  • 14
    • 84872940321 scopus 로고    scopus 로고
    • Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition
    • 14-19Oct. 2012, Seattle, WA, USA. Washington, D.C., USA: IEEE, et al,. In: G. Santucci and M. Ward, eds
    • Chae, J., et al., 2012. Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition. In: G. Santucci and M. Ward, eds. 2012 IEEE Conference on Visual Analytics Science and Technology, 14-19Oct. 2012 Seattle, WA, USA. Washington, D.C., USA: IEEE. 143–152.
    • (2012) 2012 IEEE Conference on Visual Analytics Science and Technology , pp. 143-152
    • Chae, J.1
  • 15
    • 84902437074 scopus 로고    scopus 로고
    • Event detection using Twitter: A spatio-temporal approach
    • Cheng, T., and Wicks, T., 2014. Event detection using Twitter: A spatio-temporal approach. PloS One, 9 (6), e97807. doi:10.1371/journal.pone.0097807
    • (2014) PloS One , vol.9 , Issue.6
    • Cheng, T.1    Wicks, T.2
  • 16
    • 78349277925 scopus 로고    scopus 로고
    • Monitoring influenza trends through mining social media
    • Las Vegas, NV, USA: et al,. In: H.R. Arabnia and M.Q. Yang, eds., 13-16 July 2009,. Athens, GA, USA: CSREA
    • Corley, C., et al., 2009. Monitoring influenza trends through mining social media. In: H.R. Arabnia and M.Q. Yang, eds.International Conference on Bioinformatics and Computational Biology, 13-16 July 2009, Las Vegas, NV, USA. Athens, GA, USA: CSREA, 340–346.
    • (2009) International Conference on Bioinformatics and Computational Biology , pp. 340-346
    • Corley, C.1
  • 18
    • 84873282297 scopus 로고    scopus 로고
    • # Earthquake: Twitter as a distributed sensor system
    • et al
    • Crooks, A., et al., 2013. # Earthquake: Twitter as a distributed sensor system. Transactions in GIS, 17 (1), 124–147. doi:10.1111/tgis.2013.17.issue-1
    • (2013) Transactions in GIS , vol.17 , Issue.1 , pp. 124-147
    • Crooks, A.1
  • 19
    • 79956040653 scopus 로고    scopus 로고
    • Towards detecting influenza epidemics by analyzing twitter messages
    • 25–28July 2010, Washington, D.C., USA. New York, NY, USA: ACM,. In: P. Melville, ed
    • Culotta, A., 2010. Towards detecting influenza epidemics by analyzing twitter messages. In: P. Melville, ed. Proceedings of the first workshop on social media analytics, 25–28July 2010 Washington, D.C., USA. New York, NY, USA: ACM. 115–122.
    • (2010) Proceedings of the first workshop on social media analytics , pp. 115-122
    • Culotta, A.1
  • 21
    • 84874751668 scopus 로고    scopus 로고
    • Lightweight methods to estimate influenza rates and alcohol sales volume from Twitter messages
    • Culotta, A., 2013. Lightweight methods to estimate influenza rates and alcohol sales volume from Twitter messages. Language Resources and Evaluation, 47 (1), 217–238. doi:10.1007/s10579-012-9185-0
    • (2013) Language Resources and Evaluation , vol.47 , Issue.1 , pp. 217-238
    • Culotta, A.1
  • 22
    • 79952118448 scopus 로고    scopus 로고
    • Adaptive kernel estimation of spatial relative risk
    • Davies, T.M., and Hazelton, M.L., 2010. Adaptive kernel estimation of spatial relative risk. Statistics in Medicine, 29 (23), 2423–2437.
    • (2010) Statistics in Medicine , vol.29 , Issue.23 , pp. 2423-2437
    • Davies, T.M.1    Hazelton, M.L.2
  • 23
    • 84871944768 scopus 로고    scopus 로고
    • Enhancing Twitter data analysis with simple semantic filtering: example in tracking influenza-like illnesses
    • 27-28Sept. 2012, San Diego, CA, USA. Washington, D.C., USA: IEEE, and,. In: L. Ohno-Machado and X. Jiang, eds
    • Doan, S., Ohno-Machado, L., and Collier, N., 2012. Enhancing Twitter data analysis with simple semantic filtering: example in tracking influenza-like illnesses. In: L. Ohno-Machado and X. Jiang, eds. 2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology, 27-28Sept. 2012 San Diego, CA, USA. Washington, D.C., USA: IEEE. 62–71.
    • (2012) 2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology , pp. 62-71
    • Doan, S.1    Ohno-Machado, L.2    Collier, N.3
  • 24
    • 77950531103 scopus 로고    scopus 로고
    • OMG earthquake! Can Twitter improve earthquake response?
    • et al
    • Earle, P., et al., 2010. OMG earthquake! Can Twitter improve earthquake response? Seismological Research Letters, 81 (2), 246–251. doi:10.1785/gssrl.81.2.246
    • (2010) Seismological Research Letters , vol.81 , Issue.2 , pp. 246-251
    • Earle, P.1
  • 25
    • 84979403272 scopus 로고
    • Combining var estimation and state space model reduction for simple good predictions
    • Gilbert, P.D., 1995. Combining var estimation and state space model reduction for simple good predictions. Journal of Forecasting, 14 (3), 229–250. doi:10.1002/(ISSN)1099-131X
    • (1995) Journal of Forecasting , vol.14 , Issue.3 , pp. 229-250
    • Gilbert, P.D.1
  • 26
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • et al
    • Ginsberg, J., et al., 2009. Detecting influenza epidemics using search engine query data. Nature, 457, 1012–1014. doi:10.1038/nature07634
    • (2009) Nature , vol.457 , pp. 1012-1014
    • Ginsberg, J.1
  • 27
    • 84884136107 scopus 로고    scopus 로고
    • Understanding urban human activity and mobility patterns using large-scale location-based data from online social media
    • 11–11August 2013, Chicago, IL, USA. New York, NY, USA: ACM, and,. In: Y. Zheng et al., eds
    • Hasan, S., Zhan, X., and Ukkusuri, S.V., 2013. Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In: Y. Zheng et al., eds. Proceedings of the 2nd ACM sigkdd International Workshop on Urban Computing. 11–11August 2013 Chicago, IL, USA. New York, NY, USA. ACM.
    • (2013) Proceedings of the 2nd ACM sigkdd International Workshop on Urban Computing
    • Hasan, S.1    Zhan, X.2    Ukkusuri, S.V.3
  • 28
    • 84948960670 scopus 로고    scopus 로고
    • Analyzing spatiotemporal trends in social media data via smoothing spline analysis of variance
    • et al
    • Helwig, N.E., et al., 2015. Analyzing spatiotemporal trends in social media data via smoothing spline analysis of variance. Spatial Statistics, 14, 491–504. doi:10.1016/j.spasta.2015.09.002
    • (2015) Spatial Statistics , vol.14 , pp. 491-504
    • Helwig, N.E.1
  • 29
    • 85041096717 scopus 로고    scopus 로고
    • A practical guide to support vector classification [online],. National Taiwan University. Available from:, [Accessed 03 March 2015
    • Hsu, C.W., Chang, C.C., and Lin, C.J., 2003. A practical guide to support vector classification [online]. National Taiwan University. Available from: http://zoro.ee.ncku.edu.tw/mlb2007/res/MLB08_1.pdf [Accessed 03 March 2015
    • (2003)
    • Hsu, C.W.1    Chang, C.C.2    Lin, C.J.3
  • 30
    • 84894631570 scopus 로고    scopus 로고
    • Spatiotemporal transformation of social media geostreams: a case study of twitter for flu risk analysis
    • 05–05November 2013, Orlando, FL, USA. New York, NY, USA: ACM, et al,. In: F. Banaei-Kashani et al., eds
    • Hwang, M.-H., et al., 2013. Spatiotemporal transformation of social media geostreams: a case study of twitter for flu risk analysis. In: F. Banaei-Kashani et al., eds. Proceedings of the 4th ACM SIGSPATIAL international workshop on geostreaming, 05–05November 2013 Orlando, FL, USA. New York, NY, USA: ACM. 12–21.
    • (2013) Proceedings of the 4th ACM SIGSPATIAL international workshop on geostreaming , pp. 12-21
    • Hwang, M.-H.1
  • 31
    • 71149088987 scopus 로고    scopus 로고
    • Users of the world, unite! The challenges and opportunities of social media
    • Kaplan, A.M., and Haenlein, M., 2010. Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53 (1), 59–68. doi:10.1016/j.bushor.2009.09.003
    • (2010) Business Horizons , vol.53 , Issue.1 , pp. 59-68
    • Kaplan, A.M.1    Haenlein, M.2
  • 32
    • 0028790233 scopus 로고
    • Non-parametric estimation of spatial variation in relative risk
    • Kelsall, J.E., and Diggle, P.J., 1995a. Non-parametric estimation of spatial variation in relative risk. Statistics in Medicine, 14 (21–22), 2335–2342. doi:10.1002/(ISSN)1097-0258
    • (1995) Statistics in Medicine , vol.14 , Issue.21-22 , pp. 2335-2342
    • Kelsall, J.E.1    Diggle, P.J.2
  • 33
    • 84972526998 scopus 로고
    • Kernel estimation of relative risk
    • Kelsall, J.E., and Diggle, P.J., 1995b. Kernel estimation of relative risk. Bernoulli, 3–16. doi:10.2307/3318678
    • (1995) Bernoulli , pp. 3-16
    • Kelsall, J.E.1    Diggle, P.J.2
  • 34
    • 78651315815 scopus 로고    scopus 로고
    • Travel route recommendation using geotags in photo sharing sites
    • October 2010, Toronto, ON, Canada. New York, NY, USA: ACM, et al,. In: X. J. Huang et al., eds
    • Kurashima, T., et al., 2010. Travel route recommendation using geotags in photo sharing sites. In: X. J. Huang et al., eds. Proceedings of the 19th ACM, October 2010 Toronto, ON, Canada. New York, NY, USA: ACM. 579–588.
    • (2010) Proceedings of the 19th ACM , pp. 579-588
    • Kurashima, T.1
  • 35
    • 84923276281 scopus 로고    scopus 로고
    • Separating fact from fear: tracking flu infections on twitter. In: Lucy Vanderwende et al. eds. 2013, Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 09–14 June 2013, Atlanta, GA, USA. Stroudsburg, PA, USA: Association for Computational Linguistics, and
    • Lamb, A., Paul, M.J., and Dredze, M., 2013. Separating fact from fear: tracking flu infections on twitter. In: Lucy Vanderwende et al. eds. Proceedings of the2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 09–14 June 2013, Atlanta, GA, USA. Stroudsburg, PA, USA: Association for Computational Linguistics, 789–795.
    • (2013) Proceedings of the2013 , pp. 789-795
    • Lamb, A.1    Paul, M.J.2    Dredze, M.3
  • 37
    • 78349278107 scopus 로고    scopus 로고
    • Tracking the flu pandemic by monitoring the social web
    • 14-16June 2010, Elba, Italy. Washington, D.C., USA: IEEE, and,. In: R. J. Baxley, ed
    • Lampos, V., and Cristianini, N., 2010. Tracking the flu pandemic by monitoring the social web. In: R. J. Baxley, ed. 2010 2nd international workshop on cognitive information processing, 14-16June 2010 Elba, Italy. Washington, D.C., USA: IEEE. 411–416.
    • (2010) 2010 2nd international workshop on cognitive information processing , pp. 411-416
    • Lampos, V.1    Cristianini, N.2
  • 39
    • 78650855097 scopus 로고    scopus 로고
    • Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection
    • 02–02November 2010, San Jose, CA, USA. New York, NY, USA: ACM, and,. In: W.-C. Peng and X. Xie, eds
    • Lee, R., and Sumiya, K., 2010. Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection. In: W.-C. Peng and X. Xie, eds. Proceedings of the 2nd ACM SIGSPATIAL international workshop on location based social networks, 02–02November 2010 San Jose, CA, USA. New York, NY, USA: ACM. 1–10.
    • (2010) Proceedings of the 2nd ACM SIGSPATIAL international workshop on location based social networks , pp. 1-10
    • Lee, R.1    Sumiya, K.2
  • 41
    • 84878548460 scopus 로고    scopus 로고
    • Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr
    • Li, L., Goodchild, M.F., and Xu, B., 2013. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr. Cartography and Geographic Information Science, 40 (2), 61–77. doi:10.1080/15230406.2013.777139
    • (2013) Cartography and Geographic Information Science , vol.40 , Issue.2 , pp. 61-77
    • Li, L.1    Goodchild, M.F.2    Xu, B.3
  • 42
    • 84907022466 scopus 로고    scopus 로고
    • Modeling human location data with mixtures of Kernel densities
    • 24–27August 2014, New York, NY, USA. New York, NY, USA: ACM, and,. In: J. Leskovec et al., eds
    • Lichman, M., and Smyth, P., 2014. Modeling human location data with mixtures of Kernel densities. In: J. Leskovec et al., eds. Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, 24–27August 2014 New York, NY, USA. New York, NY, USA: ACM. 35–44.
    • (2014) Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining , pp. 35-44
    • Lichman, M.1    Smyth, P.2
  • 43
    • 84992756769 scopus 로고    scopus 로고
    • Deriving retail centre locations and catchments from geo-tagged Twitter data
    • Lloyd, A., and Cheshire, J., 2017. Deriving retail centre locations and catchments from geo-tagged Twitter data. Computers, Environment and Urban Systems, 61, 108–118. doi:10.1016/j.compenvurbsys.2016.09.006
    • (2017) Computers, Environment and Urban Systems , vol.61 , pp. 108-118
    • Lloyd, A.1    Cheshire, J.2
  • 44
    • 84862908495 scopus 로고    scopus 로고
    • Senseplace2: geotwitter analytics support for situational awareness
    • 23–28October 2011, Providence, RI, USA. Washington, D.C., USA: IEEE, et al,. In: S. Miksch and M. Ward, eds
    • MacEachren, A.M., et al., 2011. Senseplace2: geotwitter analytics support for situational awareness. In: S. Miksch and M. Ward, eds. 2011 IEEE conference on visual analytics science and technology, 23–28October 2011 Providence, RI, USA. Washington, D.C., USA: IEEE. 181–190.
    • (2011) 2011 IEEE conference on visual analytics science and technology , pp. 181-190
    • MacEachren, A.M.1
  • 45
    • 33745275192 scopus 로고    scopus 로고
    • Assessing similarity of geographic processes and events
    • McIntosh, J., and Yuan, M., 2005. Assessing similarity of geographic processes and events. Transactions in GIS, 9 (2), 223–245. doi:10.1111/tgis.2005.9.issue-2
    • (2005) Transactions in GIS , vol.9 , Issue.2 , pp. 223-245
    • McIntosh, J.1    Yuan, M.2
  • 46
    • 84887933657 scopus 로고    scopus 로고
    • The complex relationship of realspace events and messages in cyberspace: case study of influenza and pertussis using tweets
    • et al
    • Nagel, A.C., et al., 2013. The complex relationship of realspace events and messages in cyberspace: case study of influenza and pertussis using tweets. Journal of Medical Internet Research, 15 (10). doi:10.2196/jmir.2705
    • (2013) Journal of Medical Internet Research , vol.15 , Issue.10
    • Nagel, A.C.1
  • 47
    • 84905089243 scopus 로고    scopus 로고
    • FluMapper: A cyberGIS application for interactive analysis of massive location-based social media
    • et al
    • Padmanabhan, A., et al., 2014. FluMapper: A cyberGIS application for interactive analysis of massive location-based social media. Concurrency and Computation: Practice and Experience, 26 (13), 2253–2265. doi:10.1002/cpe.v26.13
    • (2014) Concurrency and Computation: Practice and Experience , vol.26 , Issue.13 , pp. 2253-2265
    • Padmanabhan, A.1
  • 48
    • 85041095485 scopus 로고    scopus 로고
    • Twitter improves influenza forecasting. PLOS Currents Outbreaks [online]:, and,. Available from:, [Accessed 17 December 2017]
    • Paul, M.J., Dredze, M., and Broniatowski, D., 2014. Twitter improves influenza forecasting. PLOS Currents Outbreaks [online]. Available from: http://currents.plos.org/outbreaks/article/twitter-improves-influenza-forecasting/[Accessed 17 December 2017].
    • (2014)
    • Paul, M.J.1    Dredze, M.2    Broniatowski, D.3
  • 50
    • 84868268429 scopus 로고    scopus 로고
    • Predicting disease transmission from geo-tagged micro-blog data
    • 22-26July 2012, Toronto, Ontario, Canada. Palo Alto, CA, USA: AAAI, and,. In: J. Hoffmann and B. Selman, eds
    • Sadilek, A., Kautz, H.A., and Silenzio, V., 2012. Predicting disease transmission from geo-tagged micro-blog data. In: J. Hoffmann and B. Selman, eds. Proceedings of the Twenty-Sixth AAAI conference on artificial intelligence, 22-26July 2012 Toronto, Ontario, Canada. Palo Alto, CA, USA: AAAI. 136–142.
    • (2012) Proceedings of the Twenty-Sixth AAAI conference on artificial intelligence , pp. 136-142
    • Sadilek, A.1    Kautz, H.A.2    Silenzio, V.3
  • 51
    • 77954571408 scopus 로고    scopus 로고
    • Earthquake shakes Twitter users: real-time event detection by social sensors
    • 26-30April 2010, Raleigh, NC, USA. New York, NY, USA: ACM, and,. In: J. Freire and S. Chakrabarti, eds
    • Sakaki, T., Okazaki, M., and Matsuo, Y., 2010. Earthquake shakes Twitter users: real-time event detection by social sensors. In: J. Freire and S. Chakrabarti, eds. Proceedings of the 19th international conference on world wide web, 26-30April 2010 Raleigh, NC, USA. New York, NY, USA: ACM. 851–860.
    • (2010) Proceedings of the 19th international conference on world wide web , pp. 851-860
    • Sakaki, T.1    Okazaki, M.2    Matsuo, Y.3
  • 52
    • 77951175147 scopus 로고    scopus 로고
    • Selection of bandwidth type and adjustment side in kernel density estimation over inhomogeneous backgrounds
    • Shi, X., 2010. Selection of bandwidth type and adjustment side in kernel density estimation over inhomogeneous backgrounds. International Journal of Geographical Information Science, 24 (5), 643–660. doi:10.1080/13658810902950625
    • (2010) International Journal of Geographical Information Science , vol.24 , Issue.5 , pp. 643-660
    • Shi, X.1
  • 53
    • 79955757514 scopus 로고    scopus 로고
    • The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic
    • Signorini, A., Segre, A.M., and Polgreen, P.M., 2011. The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic. PloS One, 6, e19467. doi:10.1371/journal.pone.0019467
    • (2011) PloS One , vol.6
    • Signorini, A.1    Segre, A.M.2    Polgreen, P.M.3
  • 55
    • 84876017555 scopus 로고    scopus 로고
    • Harvesting ambient geospatial information from social media feeds
    • Stefanidis, A., Crooks, A., and Radzikowski, J., 2013. Harvesting ambient geospatial information from social media feeds. GeoJournal, 78, 319–338. doi:10.1007/s10708-011-9438-2
    • (2013) GeoJournal , vol.78 , pp. 319-338
    • Stefanidis, A.1    Crooks, A.2    Radzikowski, J.3
  • 57
    • 85041099913 scopus 로고    scopus 로고
    • Available from, [Accessed 03March 2015]
    • Texas Department of State Health Services, 2013. 2012-2013 DSHS Flu Report Week 39 [online]. Available from: http://www.dshs.state.tx.us/idcu/disease/influenza/surveillance/2013/week39/[Accessed 03March 2015]
    • (2013) 2012-2013 DSHS Flu Report Week 39 [online]
  • 59
    • 84902248006 scopus 로고    scopus 로고
    • Using large scale aggregated knowledge for social media location discovery
    • 6-9January 2014, Waikoloa, HI, USA. Washington, D.C., USA: IEEE, et al,. In: R. H. Sprague, Jr. ed
    • Thom, D., et al., 2014. Using large scale aggregated knowledge for social media location discovery. In: R. H. Sprague, Jr. ed. 2014 47th Hawaii international conference on system sciences, 6-9January 2014 Waikoloa, HI, USA. Washington, D.C., USA: IEEE. 1464–1473.
    • (2014) 2014 47th Hawaii international conference on system sciences , pp. 1464-1473
    • Thom, D.1
  • 60
    • 84882940905 scopus 로고    scopus 로고
    • Mapping social activities and concepts with social media (Twitter) and web search engines (Yahoo and Bing): a case study in 2012 US presidential election
    • et al
    • Tsou, M.-H., et al., 2013. Mapping social activities and concepts with social media (Twitter) and web search engines (Yahoo and Bing): a case study in 2012 US presidential election. Cartography and Geographic Information Science, 40 (4), 337–348. doi:10.1080/15230406.2013.799738
    • (2013) Cartography and Geographic Information Science , vol.40 , Issue.4 , pp. 337-348
    • Tsou, M.-H.1
  • 61
    • 85041134760 scopus 로고    scopus 로고
    • Social Media Analytics and Research Test-bed (SMART dashboard)
    • 27–29July 2015, Toronto, Ontario, Canada. New York, NY, USA: ACM, et al,. In: A. Gruzd et al., eds
    • Tsou, M.-H., et al., 2015. Social Media Analytics and Research Test-bed (SMART dashboard). In: A. Gruzd et al., eds. Proceedings of the 2015 international conference on social media & society, 27–29July 2015 Toronto, Ontario, Canada. New York, NY, USA: ACM. 2:1–2:7.
    • (2015) Proceedings of the 2015 international conference on social media & society
    • Tsou, M.-H.1
  • 62
    • 84890668120 scopus 로고    scopus 로고
    • Predicting elections with Twitter: what 140 characters reveal about political sentiment
    • et al
    • Tumasjan, A., et al., 2010. Predicting elections with Twitter: what 140 characters reveal about political sentiment. Icwsm, 10 (1), 178–185.
    • (2010) Icwsm , vol.10 , Issue.1 , pp. 178-185
    • Tumasjan, A.1
  • 63
    • 77954069785 scopus 로고    scopus 로고
    • A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis
    • Wang, S., 2010. A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis. Annals of the Association of American Geographers, 100 (3), 535–557. doi:10.1080/00045601003791243
    • (2010) Annals of the Association of American Geographers , vol.100 , Issue.3 , pp. 535-557
    • Wang, S.1
  • 64
    • 85137430010 scopus 로고    scopus 로고
    • A CyberGIS environment for analysis of location-based social media data
    • Karimi H.A., (ed), Boca Raton, FL, USA: CRC, et al,. In:, ed
    • Wang, S., et al., 2013. A CyberGIS environment for analysis of location-based social media data. In: H.A., Karimi, ed. Advanced Location-Based Technologies and Services. Boca Raton, FL, USA: CRC, 187–205.
    • (2013) Advanced Location-Based Technologies and Services , pp. 187-205
    • Wang, S.1
  • 65
    • 85041102453 scopus 로고    scopus 로고
    • 2014 [online]. Available from, [Accessed March 03, 2015
    • Washington State Department of Health, 2014. Washington state influenza update week 29: july 13–july 19, 2014 [online]. Available from: http://www.doh.wa.gov/Portals/1/Documents/5100/420-100-FluUpdateSeason2014.pdf [Accessed March 03, 2015
    • (2014) Washington state influenza update week 29: july 13–july 192014
  • 66
    • 84893514182 scopus 로고    scopus 로고
    • IGSLR: personalized geo-social location recommendation: A kernel density estimation approach
    • 05-08November 2013, Orlando, FL, USA. New York, NY, USA: ACM, and,. In: C. Knoblock et al., eds
    • Zhang, J.-D., and Chow, C.-Y., 2013. IGSLR: personalized geo-social location recommendation: A kernel density estimation approach. In: C. Knoblock et al., eds. Proceedings of the 21st ACM SIGSPATIAL international conference on advances in geographic information systems, 05-08November 2013 Orlando, FL, USA. New York, NY, USA: ACM. 334–343.
    • (2013) Proceedings of the 21st ACM SIGSPATIAL international conference on advances in geographic information systems , pp. 334-343
    • Zhang, J.-D.1    Chow, C.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.