-
2
-
-
84867626335
-
Visual analytics for understanding spatial situations from episodic movement data
-
2013
-
Andrienko, N. et al. 2012. Visual analytics for understanding spatial situations from episodic movement data. KIKünstliche Intelligenz, 26, 3 (2013), 241-251.
-
(2012)
KIKünstliche Intelligenz
, vol.26
, Issue.3
, pp. 241-251
-
-
Andrienko, N.1
-
3
-
-
80053970597
-
Moa-TweetReader: Real-time analysis in Twitter streaming data
-
2011
-
Bifet, A. et al. 2011. Moa-TweetReader: Real-time analysis in Twitter streaming data. Discovery Science (2011), 46-60.
-
(2011)
Discovery Science
, pp. 46-60
-
-
Bifet, A.1
-
4
-
-
84874290792
-
Reduce, you say: What NoSQL can do for data aggregation and BI in large repositories
-
2011
-
Bonnet, L. et al. 2011. Reduce, you say: What NoSQL can do for data aggregation and BI in large repositories. Database and Expert Systems Applications (2011), 483-8.
-
(2011)
Database and Expert Systems Applications
, pp. 483-488
-
-
Bonnet, L.1
-
5
-
-
74849126209
-
Dynamic maps: A visual-analytic methodology for exploring spatio-temporal disease patterns
-
(2009)
-
Castronovo, D.A. et al. 2009. Dynamic maps: a visual-analytic methodology for exploring spatio-temporal disease patterns. Environmental Health. 8, 61 (2009).
-
(2009)
Environmental Health
, vol.8
, pp. 61
-
-
Castronovo, D.A.1
-
8
-
-
84869594064
-
Syndromic classification of Twitter messages
-
P. Kostkova et al., eds. Springer
-
Collier, N. and Doan, S. 2012. Syndromic classification of Twitter messages. Electronic Healthcare. P. Kostkova et al., eds. Springer. 186-95.
-
(2012)
Electronic Healthcare
, pp. 186-195
-
-
Collier, N.1
Doan, S.2
-
10
-
-
77957873340
-
Innovation in observation: A vision for early outbreak detection
-
2010
-
Fefferman, N.H. and Naumova, E.N. 2010. Innovation in observation: a vision for early outbreak detection. Emerging Health Threats Journal. 3, e6 (2010).
-
(2010)
Emerging Health Threats Journal
, vol.3
-
-
Fefferman, N.H.1
Naumova, E.N.2
-
11
-
-
84878526821
-
What are we 'tweeting' about obesity? Mapping tweets with topic modeling and Geographic Information System
-
2013
-
Ghosh, D. and Guha, R. 2013. What are we 'tweeting' about obesity? Mapping tweets with topic modeling and Geographic Information System. Cartography and Geographic Information Science. 40, 2 (2013), 90-102.
-
(2013)
Cartography and Geographic Information Science
, vol.40
, Issue.2
, pp. 90-102
-
-
Ghosh, D.1
Guha, R.2
-
12
-
-
60549098239
-
Detecting influenza epidemics using search engine query data
-
2008
-
Ginsberg, J. et al. 2008. Detecting influenza epidemics using search engine query data. Nature. 457, 7232 (2008), 1012-4.
-
(2008)
Nature
, vol.457
, Issue.7232
, pp. 1012-1014
-
-
Ginsberg, J.1
-
13
-
-
85011936006
-
Dengue surveillance based on a computational model of spatio-temporal locality of Twitter
-
2011
-
Gomide, J. et al. 2011. Dengue surveillance based on a computational model of spatio-temporal locality of Twitter. ACM Web Science Conference (WebSci) (2011), 1-8.
-
(2011)
ACM Web Science Conference (WebSci)
, pp. 1-8
-
-
Gomide, J.1
-
14
-
-
44849122540
-
Understanding individual human mobility patterns
-
DOI 10.1038/nature06958, PII NATURE06958
-
Gonzalez, M.C. et al. 2008. Understanding individual human mobility patterns. Nature. 453, 7196 (2008), 779-82. (Pubitemid 351793783)
-
(2008)
Nature
, vol.453
, Issue.7196
, pp. 779-782
-
-
Gonzalez, M.C.1
Hidalgo, C.A.2
Barabasi, A.-L.3
-
15
-
-
13844272522
-
Comparison of office visit and nurse advice hotline data for syndromic surveillance: Baltimore- Washington, DC, metropolitan area, 2002
-
2004
-
Henry, J. V et al. 2004. Comparison of office visit and nurse advice hotline data for syndromic surveillance: Baltimore- Washington, DC, metropolitan area, 2002. MMWR. 53 Suppl, (2004), 112-6.
-
(2004)
MMWR
, vol.53
, Issue.SUPPL.
, pp. 112-116
-
-
Henry, J.V.1
-
16
-
-
16344366247
-
Design and implementation of a Space-Time Intelligence System for disease surveillance
-
DOI 10.1007/s10109-005-0147-6
-
Jacquez, G.M. et al. 2005. Design and implementation of a space-time intelligence system for disease surveillance. Journal of Geographical Systems. 7, (2005), 7-23. (Pubitemid 40473211)
-
(2005)
Journal of Geographical Systems
, vol.7
, Issue.1
, pp. 7-23
-
-
Jacquez, G.M.1
Greiling, D.A.2
Kaufmann, A.M.3
-
17
-
-
66149137223
-
Use of unstructured event-based reports for global infectious disease surveillance
-
2009
-
Keller, M. et al. 2009. Use of unstructured event-based reports for global infectious disease surveillance. Emerging infectious diseases. 15, 5 (2009), 689-95.
-
(2009)
Emerging Infectious Diseases
, vol.15
, Issue.5
, pp. 689-695
-
-
Keller, M.1
-
18
-
-
77958047753
-
Flu detector-tracking epidemics on Twitter
-
J.L. Balcazar et al., eds. Springer
-
Lampos, V. et al. 2010. Flu detector-tracking epidemics on Twitter. Machine Learning and Knowledge Discovery in Databases. J.L. Balcazar et al., eds. Springer. 599-602.
-
(2010)
Machine Learning and Knowledge Discovery in Databases
, pp. 599-602
-
-
Lampos, V.1
-
19
-
-
0036687524
-
Use of automated ambulatory-care encounter records for detection of acute illness clusters, including potential bioterrorism events
-
2002
-
Lazarus, R. et al. 2002. Use of automated ambulatory-care encounter records for detection of acute illness clusters, including potential bioterrorism events. Emerging infectious diseases. 8, 8 (2002), 753-60.
-
(2002)
Emerging Infectious Diseases
, vol.8
, Issue.8
, pp. 753-760
-
-
Lazarus, R.1
-
20
-
-
84878548460
-
Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr
-
2013
-
Li, L. et al. 2013. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr. Cartography and Geographic Information Science. 40, 2 (2013), 61-77.
-
(2013)
Cartography and Geographic Information Science
, vol.40
, Issue.2
, pp. 61-77
-
-
Li, L.1
-
22
-
-
13844298201
-
Progress in understanding and using over-the-counter pharmaceuticals for syndromic surveillance
-
2004
-
Magruder, S.F. et al. 2004. Progress in understanding and using over-the-counter pharmaceuticals for syndromic surveillance. MMWR. 24, 53 Suppl (2004), 117-22.
-
(2004)
MMWR
, vol.24
, Issue.53 SUPPL.
, pp. 117-122
-
-
Magruder, S.F.1
-
23
-
-
34249938743
-
The annual impact of seasonal influenza in the US: Measuring disease burden and costs
-
DOI 10.1016/j.vaccine.2007.03.046, PII S0264410X07003854
-
Molinari, N.-A.M. et al. 2007. The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine. 25, 27 (2007), 5086-96. (Pubitemid 46879994)
-
(2007)
Vaccine
, vol.25
, Issue.27
, pp. 5086-5096
-
-
Molinari, N.-A.M.1
Ortega-Sanchez, I.R.2
Messonnier, M.L.3
Thompson, W.W.4
Wortley, P.M.5
Weintraub, E.6
Bridges, C.B.7
-
24
-
-
84880769839
-
Early warning and outbreak detection using social networking websites: The potential of Twitter
-
P. Kostkova et al., eds. Springer
-
de Quincey, E. and Kostkova, P. 2010. Early warning and outbreak detection using social networking websites: The potential of Twitter. Electronic Healthcare. P. Kostkova et al., eds. Springer. 21-4.
-
(2010)
Electronic Healthcare
, pp. 21-24
-
-
De Quincey, E.1
Kostkova, P.2
-
27
-
-
79955757514
-
The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic
-
2011
-
Signorini, A. et al. 2011. The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic. PloS one . 6, 5 (2011), e19467.
-
(2011)
PloS One
, vol.6
, Issue.5
-
-
Signorini, A.1
-
28
-
-
84860664747
-
Spatiotemporal anomaly detection through visual analysis of geolocated Twitter messages
-
Thom, D. et al. 2012. Spatiotemporal anomaly detection through visual analysis of geolocated Twitter messages. IEEE Pacific Visualization Symposium (2012), 41-48.
-
(2012)
IEEE Pacific Visualization Symposium (2012)
, pp. 41-48
-
-
Thom, D.1
-
29
-
-
84878541655
-
Visualization of social media: Seeing a mirage or a message
-
2013
-
Tsou, M.-H. and Leitner, M. 2013. Visualization of social media: seeing a mirage or a message. Cartography and Geographic Information Science. 40, 2 (2013), 55-60.
-
(2013)
Cartography and Geographic Information Science
, vol.40
, Issue.2
, pp. 55-60
-
-
Tsou, M.-H.1
Leitner, M.2
-
30
-
-
0043029204
-
Technical description of RODS: A real-time public health surveillance system
-
DOI 10.1197/jamia.M1345
-
Tsui, F.-C. et al. 2003. Technical description of RODS: a real-time public health surveillance system. Journal of the American Medical Informatics Association. 10, 5 (2003), 399-408. (Pubitemid 37093328)
-
(2003)
Journal of the American Medical Informatics Association
, vol.10
, Issue.5
, pp. 399-408
-
-
Tsui, F.-C.1
Espino, J.U.2
Dato, V.M.3
Gesteland, P.H.4
Hutman, J.5
Wagner, M.M.6
-
31
-
-
13844299413
-
Syndrome and outbreak detection using chief-complaint data - experience of the real-time outbreak and disease surveillance project
-
2004
-
Wagner, M.M. et al. 2004. Syndrome and outbreak detection using chief-complaint data - experience of the real-time outbreak and disease surveillance project. MMWR. 53, Suppl (2004), 28-31.
-
(2004)
MMWR
, vol.53
, Issue.SUPPL.
, pp. 28-31
-
-
Wagner, M.M.1
-
33
-
-
84918786282
-
A CyberGIS Environment for Analysis of Location-Based Social Media Data
-
A.K. Hassan and H. Amin, eds. CRC Press. In press
-
Wang, S. et al. 2013. A CyberGIS Environment for Analysis of Location-Based Social Media Data. Location-based Computing and Services . A.K. Hassan and H. Amin, eds. CRC Press. In press.
-
(2013)
Location-based Computing and Services
-
-
Wang, S.1
|