메뉴 건너뛰기




Volumn , Issue , 2013, Pages 12-21

Spatiotemporal transformation of social media geostreams: A case study of Twitter for flu risk analysis

Author keywords

data pipeline; disease surveillance; social media geostreams; spatiotemporal analysis

Indexed keywords


EID: 84894631570     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2534303.2534310     Document Type: Conference Paper
Times cited : (22)

References (33)
  • 2
    • 84867626335 scopus 로고    scopus 로고
    • Visual analytics for understanding spatial situations from episodic movement data
    • 2013
    • Andrienko, N. et al. 2012. Visual analytics for understanding spatial situations from episodic movement data. KIKünstliche Intelligenz, 26, 3 (2013), 241-251.
    • (2012) KIKünstliche Intelligenz , vol.26 , Issue.3 , pp. 241-251
    • Andrienko, N.1
  • 3
    • 80053970597 scopus 로고    scopus 로고
    • Moa-TweetReader: Real-time analysis in Twitter streaming data
    • 2011
    • Bifet, A. et al. 2011. Moa-TweetReader: Real-time analysis in Twitter streaming data. Discovery Science (2011), 46-60.
    • (2011) Discovery Science , pp. 46-60
    • Bifet, A.1
  • 4
    • 84874290792 scopus 로고    scopus 로고
    • Reduce, you say: What NoSQL can do for data aggregation and BI in large repositories
    • 2011
    • Bonnet, L. et al. 2011. Reduce, you say: What NoSQL can do for data aggregation and BI in large repositories. Database and Expert Systems Applications (2011), 483-8.
    • (2011) Database and Expert Systems Applications , pp. 483-488
    • Bonnet, L.1
  • 5
    • 74849126209 scopus 로고    scopus 로고
    • Dynamic maps: A visual-analytic methodology for exploring spatio-temporal disease patterns
    • (2009)
    • Castronovo, D.A. et al. 2009. Dynamic maps: a visual-analytic methodology for exploring spatio-temporal disease patterns. Environmental Health. 8, 61 (2009).
    • (2009) Environmental Health , vol.8 , pp. 61
    • Castronovo, D.A.1
  • 8
    • 84869594064 scopus 로고    scopus 로고
    • Syndromic classification of Twitter messages
    • P. Kostkova et al., eds. Springer
    • Collier, N. and Doan, S. 2012. Syndromic classification of Twitter messages. Electronic Healthcare. P. Kostkova et al., eds. Springer. 186-95.
    • (2012) Electronic Healthcare , pp. 186-195
    • Collier, N.1    Doan, S.2
  • 10
    • 77957873340 scopus 로고    scopus 로고
    • Innovation in observation: A vision for early outbreak detection
    • 2010
    • Fefferman, N.H. and Naumova, E.N. 2010. Innovation in observation: a vision for early outbreak detection. Emerging Health Threats Journal. 3, e6 (2010).
    • (2010) Emerging Health Threats Journal , vol.3
    • Fefferman, N.H.1    Naumova, E.N.2
  • 11
    • 84878526821 scopus 로고    scopus 로고
    • What are we 'tweeting' about obesity? Mapping tweets with topic modeling and Geographic Information System
    • 2013
    • Ghosh, D. and Guha, R. 2013. What are we 'tweeting' about obesity? Mapping tweets with topic modeling and Geographic Information System. Cartography and Geographic Information Science. 40, 2 (2013), 90-102.
    • (2013) Cartography and Geographic Information Science , vol.40 , Issue.2 , pp. 90-102
    • Ghosh, D.1    Guha, R.2
  • 12
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • 2008
    • Ginsberg, J. et al. 2008. Detecting influenza epidemics using search engine query data. Nature. 457, 7232 (2008), 1012-4.
    • (2008) Nature , vol.457 , Issue.7232 , pp. 1012-1014
    • Ginsberg, J.1
  • 13
    • 85011936006 scopus 로고    scopus 로고
    • Dengue surveillance based on a computational model of spatio-temporal locality of Twitter
    • 2011
    • Gomide, J. et al. 2011. Dengue surveillance based on a computational model of spatio-temporal locality of Twitter. ACM Web Science Conference (WebSci) (2011), 1-8.
    • (2011) ACM Web Science Conference (WebSci) , pp. 1-8
    • Gomide, J.1
  • 14
    • 44849122540 scopus 로고    scopus 로고
    • Understanding individual human mobility patterns
    • DOI 10.1038/nature06958, PII NATURE06958
    • Gonzalez, M.C. et al. 2008. Understanding individual human mobility patterns. Nature. 453, 7196 (2008), 779-82. (Pubitemid 351793783)
    • (2008) Nature , vol.453 , Issue.7196 , pp. 779-782
    • Gonzalez, M.C.1    Hidalgo, C.A.2    Barabasi, A.-L.3
  • 15
    • 13844272522 scopus 로고    scopus 로고
    • Comparison of office visit and nurse advice hotline data for syndromic surveillance: Baltimore- Washington, DC, metropolitan area, 2002
    • 2004
    • Henry, J. V et al. 2004. Comparison of office visit and nurse advice hotline data for syndromic surveillance: Baltimore- Washington, DC, metropolitan area, 2002. MMWR. 53 Suppl, (2004), 112-6.
    • (2004) MMWR , vol.53 , Issue.SUPPL. , pp. 112-116
    • Henry, J.V.1
  • 16
    • 16344366247 scopus 로고    scopus 로고
    • Design and implementation of a Space-Time Intelligence System for disease surveillance
    • DOI 10.1007/s10109-005-0147-6
    • Jacquez, G.M. et al. 2005. Design and implementation of a space-time intelligence system for disease surveillance. Journal of Geographical Systems. 7, (2005), 7-23. (Pubitemid 40473211)
    • (2005) Journal of Geographical Systems , vol.7 , Issue.1 , pp. 7-23
    • Jacquez, G.M.1    Greiling, D.A.2    Kaufmann, A.M.3
  • 17
    • 66149137223 scopus 로고    scopus 로고
    • Use of unstructured event-based reports for global infectious disease surveillance
    • 2009
    • Keller, M. et al. 2009. Use of unstructured event-based reports for global infectious disease surveillance. Emerging infectious diseases. 15, 5 (2009), 689-95.
    • (2009) Emerging Infectious Diseases , vol.15 , Issue.5 , pp. 689-695
    • Keller, M.1
  • 18
    • 77958047753 scopus 로고    scopus 로고
    • Flu detector-tracking epidemics on Twitter
    • J.L. Balcazar et al., eds. Springer
    • Lampos, V. et al. 2010. Flu detector-tracking epidemics on Twitter. Machine Learning and Knowledge Discovery in Databases. J.L. Balcazar et al., eds. Springer. 599-602.
    • (2010) Machine Learning and Knowledge Discovery in Databases , pp. 599-602
    • Lampos, V.1
  • 19
    • 0036687524 scopus 로고    scopus 로고
    • Use of automated ambulatory-care encounter records for detection of acute illness clusters, including potential bioterrorism events
    • 2002
    • Lazarus, R. et al. 2002. Use of automated ambulatory-care encounter records for detection of acute illness clusters, including potential bioterrorism events. Emerging infectious diseases. 8, 8 (2002), 753-60.
    • (2002) Emerging Infectious Diseases , vol.8 , Issue.8 , pp. 753-760
    • Lazarus, R.1
  • 20
    • 84878548460 scopus 로고    scopus 로고
    • Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr
    • 2013
    • Li, L. et al. 2013. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr. Cartography and Geographic Information Science. 40, 2 (2013), 61-77.
    • (2013) Cartography and Geographic Information Science , vol.40 , Issue.2 , pp. 61-77
    • Li, L.1
  • 22
    • 13844298201 scopus 로고    scopus 로고
    • Progress in understanding and using over-the-counter pharmaceuticals for syndromic surveillance
    • 2004
    • Magruder, S.F. et al. 2004. Progress in understanding and using over-the-counter pharmaceuticals for syndromic surveillance. MMWR. 24, 53 Suppl (2004), 117-22.
    • (2004) MMWR , vol.24 , Issue.53 SUPPL. , pp. 117-122
    • Magruder, S.F.1
  • 24
    • 84880769839 scopus 로고    scopus 로고
    • Early warning and outbreak detection using social networking websites: The potential of Twitter
    • P. Kostkova et al., eds. Springer
    • de Quincey, E. and Kostkova, P. 2010. Early warning and outbreak detection using social networking websites: The potential of Twitter. Electronic Healthcare. P. Kostkova et al., eds. Springer. 21-4.
    • (2010) Electronic Healthcare , pp. 21-24
    • De Quincey, E.1    Kostkova, P.2
  • 27
    • 79955757514 scopus 로고    scopus 로고
    • The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic
    • 2011
    • Signorini, A. et al. 2011. The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic. PloS one . 6, 5 (2011), e19467.
    • (2011) PloS One , vol.6 , Issue.5
    • Signorini, A.1
  • 28
    • 84860664747 scopus 로고    scopus 로고
    • Spatiotemporal anomaly detection through visual analysis of geolocated Twitter messages
    • Thom, D. et al. 2012. Spatiotemporal anomaly detection through visual analysis of geolocated Twitter messages. IEEE Pacific Visualization Symposium (2012), 41-48.
    • (2012) IEEE Pacific Visualization Symposium (2012) , pp. 41-48
    • Thom, D.1
  • 29
    • 84878541655 scopus 로고    scopus 로고
    • Visualization of social media: Seeing a mirage or a message
    • 2013
    • Tsou, M.-H. and Leitner, M. 2013. Visualization of social media: seeing a mirage or a message. Cartography and Geographic Information Science. 40, 2 (2013), 55-60.
    • (2013) Cartography and Geographic Information Science , vol.40 , Issue.2 , pp. 55-60
    • Tsou, M.-H.1    Leitner, M.2
  • 31
    • 13844299413 scopus 로고    scopus 로고
    • Syndrome and outbreak detection using chief-complaint data - experience of the real-time outbreak and disease surveillance project
    • 2004
    • Wagner, M.M. et al. 2004. Syndrome and outbreak detection using chief-complaint data - experience of the real-time outbreak and disease surveillance project. MMWR. 53, Suppl (2004), 28-31.
    • (2004) MMWR , vol.53 , Issue.SUPPL. , pp. 28-31
    • Wagner, M.M.1
  • 33
    • 84918786282 scopus 로고    scopus 로고
    • A CyberGIS Environment for Analysis of Location-Based Social Media Data
    • A.K. Hassan and H. Amin, eds. CRC Press. In press
    • Wang, S. et al. 2013. A CyberGIS Environment for Analysis of Location-Based Social Media Data. Location-based Computing and Services . A.K. Hassan and H. Amin, eds. CRC Press. In press.
    • (2013) Location-based Computing and Services
    • Wang, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.