메뉴 건너뛰기




Volumn 14, Issue , 2015, Pages 491-504

Analyzing spatiotemporal trends in social media data via smoothing spline analysis of variance

Author keywords

Smoothing spline; Social media; Spatial smoothing; Spatiotemporal smoothing

Indexed keywords


EID: 84948960670     PISSN: 22116753     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.spasta.2015.09.002     Document Type: Article
Times cited : (13)

References (53)
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans. Automat. Control 1974, 19:716-723.
    • (1974) IEEE Trans. Automat. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 5
    • 79953102821 scopus 로고    scopus 로고
    • Twitter mood predicts the stock market
    • Bollen J., Mao H., Zeng X. Twitter mood predicts the stock market. J. Comput. Sci. 2011, 2:1-8.
    • (2011) J. Comput. Sci. , vol.2 , pp. 1-8
    • Bollen, J.1    Mao, H.2    Zeng, X.3
  • 6
    • 84902437074 scopus 로고    scopus 로고
    • Event detection using Twitter: A spatio-temporal approach
    • Cheng T., Wicks T. Event detection using Twitter: A spatio-temporal approach. PLoS One 2014, 9:e97807.
    • (2014) PLoS One , vol.9 , pp. e97807
    • Cheng, T.1    Wicks, T.2
  • 8
    • 78349277925 scopus 로고    scopus 로고
    • Monitoring influenza trends through mining social media
    • Corley, C., Mikler, A.R., Singh, K.P., Cook, D.J., 2009. Monitoring influenza trends through mining social media, in: BIOCOMP, pp. 340-346.
    • (2009) BIOCOMP , pp. 340-346
    • Corley, C.1    Mikler, A.R.2    Singh, K.P.3    Cook, D.J.4
  • 9
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
    • Craven P., Wahba G. Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 1979, 31:377-403.
    • (1979) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 14
    • 0036975172 scopus 로고    scopus 로고
    • Penalized likelihood regression: general formulation and efficient approximation
    • Gu C., Kim Y.-J. Penalized likelihood regression: general formulation and efficient approximation. Canad. J. Statist. 2002, 30:619-628.
    • (2002) Canad. J. Statist. , vol.30 , pp. 619-628
    • Gu, C.1    Kim, Y.-J.2
  • 15
    • 20744451865 scopus 로고    scopus 로고
    • Generalized nonparametric mixed-effect models: Computation and smoothing parameter selection
    • Gu C., Ma P. Generalized nonparametric mixed-effect models: Computation and smoothing parameter selection. J. Comput. Graph. Statist. 2005, 14:485-504.
    • (2005) J. Comput. Graph. Statist. , vol.14 , pp. 485-504
    • Gu, C.1    Ma, P.2
  • 16
    • 23744488295 scopus 로고    scopus 로고
    • Optimal smoothing in nonparametric mixed-effect models
    • Gu C., Ma P. Optimal smoothing in nonparametric mixed-effect models. Ann. Statist. 2005, 33:1357-1379.
    • (2005) Ann. Statist. , vol.33 , pp. 1357-1379
    • Gu, C.1    Ma, P.2
  • 17
    • 0001003992 scopus 로고
    • Minimizing GCV/GML scores with multiple smoothing parameters via the Newton method
    • Gu C., Wahba G. Minimizing GCV/GML scores with multiple smoothing parameters via the Newton method. SIAM J. Sci. Stat. Comput. 1991, 12:383-398.
    • (1991) SIAM J. Sci. Stat. Comput. , vol.12 , pp. 383-398
    • Gu, C.1    Wahba, G.2
  • 18
    • 80053096906 scopus 로고
    • Smoothing spline ANOVA with component-wise Bayesian "confidence intervals"
    • Gu C., Wahba G. Smoothing spline ANOVA with component-wise Bayesian "confidence intervals". J. Comput. Graph. Statist. 1993, 2:97-117.
    • (1993) J. Comput. Graph. Statist. , vol.2 , pp. 97-117
    • Gu, C.1    Wahba, G.2
  • 20
    • 84949020300 scopus 로고    scopus 로고
    • bigsplines: Smoothing Splines for Large Samples
    • Helwig, N.E., 2015. bigsplines: Smoothing Splines for Large Samples. R package version 1.0-6. URL: http://CRAN.R-project.org/package=bigsplines.
    • (2015) R package version 1.0-6
    • Helwig, N.E.1
  • 21
    • 84941754990 scopus 로고    scopus 로고
    • Fast and stable multiple smoothing parameter selection in smoothing spline analysis of variance models with large samples
    • Helwig N.E., Ma P. Fast and stable multiple smoothing parameter selection in smoothing spline analysis of variance models with large samples. J. Comput. Graph. Statist. 2015, 24(3):715-732.
    • (2015) J. Comput. Graph. Statist. , vol.24 , Issue.3 , pp. 715-732
    • Helwig, N.E.1    Ma, P.2
  • 22
    • 84949020301 scopus 로고    scopus 로고
    • Smoothing spline ANOVA for super-large samples: Scalable computation via rounding parameters
    • in press
    • Helwig N.E., Ma P. Smoothing spline ANOVA for super-large samples: Scalable computation via rounding parameters. Stat. Interface 2015, in press.
    • (2015) Stat. Interface
    • Helwig, N.E.1    Ma, P.2
  • 23
    • 0035499103 scopus 로고    scopus 로고
    • The point in polygon problem for arbitrary polygons
    • Hormann K., Agathos A. The point in polygon problem for arbitrary polygons. Comput. Geom. 2001, 20:131-144.
    • (2001) Comput. Geom. , vol.20 , pp. 131-144
    • Hormann, K.1    Agathos, A.2
  • 24
    • 71149088987 scopus 로고    scopus 로고
    • Users of the world unite! The challenges and opportunities of social media
    • Kaplan A.M., Haenlein M. Users of the world unite! The challenges and opportunities of social media. Bus. Horiz. 2010, 53:59-68.
    • (2010) Bus. Horiz. , vol.53 , pp. 59-68
    • Kaplan, A.M.1    Haenlein, M.2
  • 25
    • 2442486641 scopus 로고    scopus 로고
    • Smoothing spline Gaussian regression: More scalable computation via efficient approximation
    • Kim Y.-J., Gu C. Smoothing spline Gaussian regression: More scalable computation via efficient approximation. J. R. Stat. Soc. Ser. B 2004, 66:337-356.
    • (2004) J. R. Stat. Soc. Ser. B , vol.66 , pp. 337-356
    • Kim, Y.-J.1    Gu, C.2
  • 26
    • 0000406385 scopus 로고
    • A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
    • Kimeldorf G., Wahba G. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Statist. 1970, 41:495-502.
    • (1970) Ann. Math. Statist. , vol.41 , pp. 495-502
    • Kimeldorf, G.1    Wahba, G.2
  • 27
    • 84893294368 scopus 로고    scopus 로고
    • Detecting events and patterns in large-scale user generated textual streams with statistical learning methods.
    • Lampos, V., 2012. Detecting events and patterns in large-scale user generated textual streams with statistical learning methods.
    • (2012)
    • Lampos, V.1
  • 29
    • 84867410703 scopus 로고    scopus 로고
    • Nowcasting events from the social web with statistical learning
    • Lampos V., Cristianini N. Nowcasting events from the social web with statistical learning. ACM Trans. Intell. Syst. Technol. 2012, 3:72.
    • (2012) ACM Trans. Intell. Syst. Technol. , vol.3 , pp. 72
    • Lampos, V.1    Cristianini, N.2
  • 31
    • 0001462696 scopus 로고
    • L, cross-validation and generalized cross-validation: Discrete index set
    • L, cross-validation and generalized cross-validation: Discrete index set. Ann. Statist. 1987, 15:958-975.
    • (1987) Ann. Statist. , vol.15 , pp. 958-975
    • Li, K.-C.1
  • 32
    • 84949020302 scopus 로고    scopus 로고
    • Top Twitter trends: What countries are most active?
    • Lipman, V., 2014. Top Twitter trends: What countries are most active? Who's most popular? http://www.forbes.com/sites/victorlipman/2014/05/24/top-twitter-trends-what-countries-are-most-active-whos-most-popular/.
    • (2014) Who's most popular?
    • Lipman, V.1
  • 33
    • 84941730377 scopus 로고    scopus 로고
    • Efficient computation of smoothing splines via adaptive basis sampling
    • Ma P., Huang J., Zhang N. Efficient computation of smoothing splines via adaptive basis sampling. Biometrika 2015, 102:631-645.
    • (2015) Biometrika , vol.102 , pp. 631-645
    • Ma, P.1    Huang, J.2    Zhang, N.3
  • 35
    • 0000178613 scopus 로고
    • On the reciprocal of the general algebraic matrix
    • Moore E.H. On the reciprocal of the general algebraic matrix. Bull. Amer. Math. Soc. 1920, 26:394-395.
    • (1920) Bull. Amer. Math. Soc. , vol.26 , pp. 394-395
    • Moore, E.H.1
  • 36
    • 33845606053 scopus 로고
    • Bayesian confidence intervals for smoothing splines
    • Nychka D. Bayesian confidence intervals for smoothing splines. J. Amer. Statist. Assoc. 1988, 83:1134-1143.
    • (1988) J. Amer. Statist. Assoc. , vol.83 , pp. 1134-1143
    • Nychka, D.1
  • 38
    • 84947145047 scopus 로고
    • A generalized inverse for matrices
    • Penrose R. A generalized inverse for matrices. Math. Proc. Camb. Phil. Soc. 1950, 51:406-413.
    • (1950) Math. Proc. Camb. Phil. Soc. , vol.51 , pp. 406-413
    • Penrose, R.1
  • 39
    • 84868268429 scopus 로고    scopus 로고
    • Predicting disease transmission from geo-tagged micro-blog data
    • Sadilek, A., Kautz, H., Silenzio, V., 2012. Predicting disease transmission from geo-tagged micro-blog data, in: AAAI, pp. 136-142.
    • (2012) AAAI , pp. 136-142
    • Sadilek, A.1    Kautz, H.2    Silenzio, V.3
  • 40
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G.E. Estimating the dimension of a model. Ann. Statist. 1978, 6:461-464.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.E.1
  • 41
    • 79955757514 scopus 로고    scopus 로고
    • The use of Twitter to track levels of disease activity and public concern in the us during the influenza A H1N1 pandemic
    • Signorini A., Serge A.M., Polgreen P.M. The use of Twitter to track levels of disease activity and public concern in the us during the influenza A H1N1 pandemic. PLoS One 2011, 6:e19467.
    • (2011) PLoS One , vol.6 , pp. e19467
    • Signorini, A.1    Serge, A.M.2    Polgreen, P.M.3
  • 43
    • 84882940905 scopus 로고    scopus 로고
    • Mapping social activities and concepts with social media (Twitter) and web search engines (Yahoo and Bing): a case study in 2012 US presidential election
    • Tsou M.H., Yang J.A., Lusher D., Han S., Spitzberg B., Gawron J.M., et al. Mapping social activities and concepts with social media (Twitter) and web search engines (Yahoo and Bing): a case study in 2012 US presidential election. Cart. Geog. Info. Sci. 2013, 40:337-348.
    • (2013) Cart. Geog. Info. Sci. , vol.40 , pp. 337-348
    • Tsou, M.H.1    Yang, J.A.2    Lusher, D.3    Han, S.4    Spitzberg, B.5    Gawron, J.M.6
  • 44
    • 84938086549 scopus 로고    scopus 로고
    • Twitter, 2015. Twitter usage URL: https://about.twitter.com/company.
    • (2015) Twitter usage
  • 45
    • 0000939344 scopus 로고
    • Bayesian confidence intervals for the cross-validated smoothing spline
    • Wahba G. Bayesian confidence intervals for the cross-validated smoothing spline. J. R. Stat. Soc. Ser. B 1983, 45:133-150.
    • (1983) J. R. Stat. Soc. Ser. B , vol.45 , pp. 133-150
    • Wahba, G.1
  • 46
    • 0003466536 scopus 로고
    • Society for Industrial and Applied Mathematics, Philadelphia
    • Wahba G. Spline Models for Observational Data 1990, Society for Industrial and Applied Mathematics, Philadelphia.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1
  • 47
    • 0041865172 scopus 로고
    • Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological study of diabetic retinopathy
    • Wahba G., Wang Y., Gu C., Klein R., Klein B. Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological study of diabetic retinopathy. Ann. Statist. 1995, 23:1865-1895.
    • (1995) Ann. Statist. , vol.23 , pp. 1865-1895
    • Wahba, G.1    Wang, Y.2    Gu, C.3    Klein, R.4    Klein, B.5
  • 48
    • 0000176720 scopus 로고    scopus 로고
    • Mixed effects smoothing spline analysis of variance
    • Wang Y. Mixed effects smoothing spline analysis of variance. J. R. Stat. Soc. Ser. B 1998, 60:159-174.
    • (1998) J. R. Stat. Soc. Ser. B , vol.60 , pp. 159-174
    • Wang, Y.1
  • 49
    • 0032336499 scopus 로고    scopus 로고
    • Smoothing spline models with correlated random errors
    • Wang Y. Smoothing spline models with correlated random errors. J. Amer. Statist. Assoc. 1998, 93:341-348.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 341-348
    • Wang, Y.1
  • 50
    • 85137430010 scopus 로고    scopus 로고
    • A cybergis environment for analysis of location-based social media data
    • CRC Press, A.K. Hassan, H. Amin (Eds.)
    • Wang S., Cao G., Zhang Z., Zhao Y., Padmanabhan A. A cybergis environment for analysis of location-based social media data. Location-Based Computing and Services 2013, 187-205. CRC Press. second ed. A.K. Hassan, H. Amin (Eds.).
    • (2013) Location-Based Computing and Services , pp. 187-205
    • Wang, S.1    Cao, G.2    Zhang, Z.3    Zhao, Y.4    Padmanabhan, A.5
  • 51
    • 0141576514 scopus 로고    scopus 로고
    • Thin plate regression splines
    • Wood S.N. Thin plate regression splines. J. R. Stat. Soc. Ser. B 2003, 65:95-114.
    • (2003) J. R. Stat. Soc. Ser. B , vol.65 , pp. 95-114
    • Wood, S.N.1
  • 53
    • 0032390647 scopus 로고    scopus 로고
    • Semiparametric stochastic mixed models for longitudinal data
    • Zhang D., Lin X., Raz J., Sowers M. Semiparametric stochastic mixed models for longitudinal data. J. Amer. Statist. Assoc. 1998, 93:710-719.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 710-719
    • Zhang, D.1    Lin, X.2    Raz, J.3    Sowers, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.