메뉴 건너뛰기




Volumn 13, Issue 1, 2018, Pages

Drug drug interaction extraction from the literature using a recursive neural network

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; CLASSIFICATION ALGORITHM; COMPARATIVE STUDY; DRUG INTERACTION; IN VITRO STUDY; IN VIVO STUDY; PHARMACOKINETICS; RECURSIVE NEURAL NETWORK; VALIDATION PROCESS; ADVERSE DRUG REACTION; DATA MINING; HUMAN; NATURAL LANGUAGE PROCESSING; PROCEDURES; PUBLICATION; STATISTICS AND NUMERICAL DATA; SUPPORT VECTOR MACHINE;

EID: 85041059362     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0190926     Document Type: Article
Times cited : (94)

References (38)
  • 1
    • 84555217845 scopus 로고    scopus 로고
    • Epidemiology and characteristics of adverse drug reactions caused by drug–drug interactions
    • PMID: 22022824
    • Magro L., Moretti U., Leone R. Epidemiology and characteristics of adverse drug reactions caused by drug–drug interactions. Expert opinion on drug safety. 2012; 11(1), 83–94. https://doi.org/10.1517/14740338.2012.631910 PMID: 22022824
    • (2012) Expert Opinion on Drug Safety , vol.11 , Issue.1 , pp. 83-94
    • Magro, L.1    Moretti, U.2    Leone, R.3
  • 2
    • 84891767304 scopus 로고    scopus 로고
    • Drugbank 4.0: Shedding new light on drug metabolism
    • PMID: 24203711
    • Law V., Knox C., Djoumbou Y., Jewison T., Guo AC., Liu Y., et al. Drugbank 4.0: shedding new light on drug metabolism. Nucleic acids research. 2013; 42(D1), D1091–D1097. https://doi.org/10.1093/nar/ gkt1068 PMID: 24203711
    • (2013) Nucleic Acids Research , vol.42 , Issue.D1 , pp. D1091-D1097
    • Law, V.1    Knox, C.2    Djoumbou, Y.3    Jewison, T.4    Guo, A.C.5    Liu, Y.6
  • 6
    • 84978508365 scopus 로고    scopus 로고
    • Internet
    • Fda’s adverse event reporting system. [Internet] 2017; Available from: https://www.fda.gov/drugs/informationondrugs/ucm135151.htm
    • (2017) Fda’S Adverse Event Reporting System
  • 7
    • 84938578107 scopus 로고    scopus 로고
    • Semeval-2013 task 9: Extraction of drug-drug interactions from biomedical texts (ddiextraction 2013)
    • Segura Bedmar I., Martínez P., Herrero Zazo, M. Semeval-2013 task 9: Extraction of drug-drug interactions from biomedical texts (ddiextraction 2013). Association for Computational Linguistics. 2013
    • (2013) Association for Computational Linguistics
    • Bedmar, S.I.1    Martínez, P.2    Zazo, H.M.3
  • 8
    • 84930689846 scopus 로고    scopus 로고
    • Extracting drug–drug interactions from literature using a rich feature-based linear kernel approach
    • PMID: 25796456
    • Kim S., Liu H., Yeganova L., Wilbur WJ. Extracting drug–drug interactions from literature using a rich feature-based linear kernel approach. Journal of biomedical informatics. 2015; 55, 23–30. https://doi.org/10.1016/j.jbi.2015.03.002 PMID: 25796456
    • (2015) Journal of Biomedical Informatics , vol.55 , pp. 23-30
    • Kim, S.1    Liu, H.2    Yeganova, L.3    Wilbur, W.J.4
  • 9
    • 85031322240 scopus 로고    scopus 로고
    • Fbk-irst: A multi-phase kernel based approach for drug-drug interaction detection and classification that exploits linguistic information
    • Chowdhury MFM., Lavelli A. Fbk-irst: a multi-phase kernel based approach for drug-drug interaction detection and classification that exploits linguistic information. SemEval@ NAACL-HLT. 2013; 351, 53.
    • (2013) SemEval@ NAACL-HLT , vol.351 , pp. 53
    • Chowdhury, M.F.M.1    Lavelli, A.2
  • 10
    • 85008626797 scopus 로고    scopus 로고
    • Drug drug interaction extraction from biomedical literature using syntax convolutional neural network
    • PMID: 27466626
    • Zhao Z., Yang Z., Luo L., Lin H., Wang J. Drug drug interaction extraction from biomedical literature using syntax convolutional neural network. Bioinformatics. 2016; 32(22), 3444–3453. https://doi.org/10.1093/bioinformatics/btw486 PMID: 27466626
    • (2016) Bioinformatics , vol.32 , Issue.22 , pp. 3444-3453
    • Zhao, Z.1    Yang, Z.2    Luo, L.3    Lin, H.4    Wang, J.5
  • 11
    • 85008689576 scopus 로고    scopus 로고
    • Multichannel convolutional neural network for biological relation extraction
    • Quan C., Hua L., Sun X., Bai W. Multichannel convolutional neural network for biological relation extraction. BioMed Research International. 2016 https://doi.org/10.1155/2016/1850404
    • (2016) BioMed Research International
    • Quan, C.1    Hua, L.2    Sun, X.3    Bai, W.4
  • 13
    • 85032377041 scopus 로고    scopus 로고
    • Exploring convolutional neural networks for drug–drug interaction extraction
    • PMID: 28605776
    • Suárez-Paniagua V., Segura-Bedmar I., Martínez P. Exploring convolutional neural networks for drug–drug interaction extraction. Database. 2017 https://doi.org/10.1093/database/bax019 PMID: 28605776
    • (2017) Database
    • Suárez-Paniagua, V.1    Segura-Bedmar, I.2    Martínez, P.3
  • 18
    • 84873033718 scopus 로고    scopus 로고
    • An integrated pharmacokinetics ontology and corpus for text mining
    • PMID: 23374886
    • Wu HY., Karnik S., Subhadarshini A., Wang Z., Philips S., Han X., et al. An integrated pharmacokinetics ontology and corpus for text mining. BMC bioinformatics. 2013; 14(1), 35. https://doi.org/10.1186/1471-2105-14-35 PMID: 23374886
    • (2013) BMC Bioinformatics , vol.14 , Issue.1 , pp. 35
    • Wu, H.Y.1    Karnik, S.2    Subhadarshini, A.3    Wang, Z.4    Philips, S.5    Han, X.6
  • 19
    • 84980583466 scopus 로고    scopus 로고
    • Uturku: Drug named entity recognition and drug-drug interaction extraction using SVM classification and domain knowledge
    • Björne J., Kaewphan S., Salakoski T. Uturku: drug named entity recognition and drug-drug interaction extraction using svm classification and domain knowledge. In Second Joint Conference on Lexical and Computational Semantics (* SEM). 2013;volume 2, pages 651–659
    • (2013) Second Joint Conference on Lexical and Computational Semantics (* SEM) , vol.2 , pp. 651-659
    • Björne, J.1    Kaewphan, S.2    Salakoski, T.3
  • 20
    • 84992163318 scopus 로고    scopus 로고
    • Best: Next-generation biomedical entity search tool for knowledge discovery from biomedical literature
    • PMID: 27760149
    • Lee S., Kim D., Lee K., Choi J., Kim S., Jeon M., et al. Best: next-generation biomedical entity search tool for knowledge discovery from biomedical literature. PloS one. 2016; 11(10), e0164680. https://doi.org/10.1371/journal.pone.0164680 PMID: 27760149
    • (2016) PloS One , vol.11 , Issue.10
    • Lee, S.1    Kim, D.2    Lee, K.3    Choi, J.4    Kim, S.5    Jeon, M.6
  • 21
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • PMID: 9377276
    • Hochreiter S., Schmidhuber J. Long short-term memory. Neural computation. 1997; 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 PMID: 9377276
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 24
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • Cited 20 October 2017
    • Mikolov T., Chen K., Corrado G., Dean J. Efficient estimation of word representations in vector space; 2013. Preprint. Available from: arXiv:1301.3781. Cited 20 October 2017
    • (2013) Preprint
    • Mikolov, T.1    Chen, K.2    Corrado, G.3    Dean, J.4
  • 31
    • 84959862537 scopus 로고    scopus 로고
    • Relation classification via convolutional deep neural network
    • Zeng D., Liu K., Lai S., Zhou G., Zhao J. Relation classification via convolutional deep neural network. In COLING. 2014;pages 2335–2344.
    • (2014) COLING , pp. 2335-2344
    • Zeng, D.1    Liu, K.2    Lai, S.3    Zhou, G.4    Zhao, J.5
  • 33
    • 84983591563 scopus 로고    scopus 로고
    • Leveraging syntactic and semantic graph kernels to extract pharmacokinetic drug drug interactions from biomedical literature
    • PMID: 27585838
    • Zhang Y., Wu HY., Xu J., Wang J., Soysal E., Li L., et al. Leveraging syntactic and semantic graph kernels to extract pharmacokinetic drug drug interactions from biomedical literature. BMC Systems Biology. 2016; 10(3), 67. https://doi.org/10.1186/s12918-016-0311-2 PMID: 27585838
    • (2016) BMC Systems Biology , vol.10 , Issue.3 , pp. 67
    • Zhang, Y.1    Wu, H.Y.2    Xu, J.3    Wang, J.4    Soysal, E.5    Li, L.6
  • 37
    • 56649091413 scopus 로고    scopus 로고
    • All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning
    • PMID: 19025688
    • Airola A., Pyysalo S., Björne J., Pahikkala T., Ginter F., Salakoski T. All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning. BMC bioinformatics. 2008; 9(11), S2. https://doi.org/10.1186/1471-2105-9-S11-S2 PMID: 19025688
    • (2008) BMC Bioinformatics , vol.9 , Issue.11 , pp. S2
    • Airola, A.1    Pyysalo, S.2    Björne, J.3    Pahikkala, T.4    Ginter, F.5    Salakoski, T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.