-
1
-
-
0035891138
-
Photoelectrochemical cells
-
M. Grätzel Photoelectrochemical cells Nature 2001 414 338 344 10.1038/35104607
-
(2001)
Nature
, vol.414
, pp. 338-344
-
-
Grätzel, M.1
-
2
-
-
33750458683
-
Powering the planet: Chemical challenges in solar energy utilization
-
N. S. Lewis D. G. Nocera Powering the planet: Chemical challenges in solar energy utilization Proc. Natl. Acad. Sci. U. S. A. 2006 103 15729 15735 10.1073/pnas.0603395103
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 15729-15735
-
-
Lewis, N.S.1
Nocera, D.G.2
-
3
-
-
84955493590
-
Research opportunities to advance solar energy utilization
-
N. S. Lewis Research opportunities to advance solar energy utilization Science 2016 351 aad1920 10.1126/science.aad1920
-
(2016)
Science
, vol.351
, pp. aad1920
-
-
Lewis, N.S.1
-
4
-
-
84902983122
-
Sustainable solar hydrogen production: From photoelectrochemical cells to PV-electrolyzers and back again
-
T. J. Jacobsson V. Fjällström M. Edoff T. Edvinsson Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again Energy Environ. Sci. 2014 7 2056 10.1039/c4ee00754a
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 2056
-
-
Jacobsson, T.J.1
Fjällström, V.2
Edoff, M.3
Edvinsson, T.4
-
10
-
-
84983688430
-
Demonstration of a Solar Reactor for Carbon Dioxide Splitting via the Isothermal Ceria Redox Cycle and Practical Implications
-
B. J. Hathaway R. Bala Chandran A. C. Gladen T. R. Chase J. H. Davidson Demonstration of a Solar Reactor for Carbon Dioxide Splitting via the Isothermal Ceria Redox Cycle and Practical Implications Energy Fuels 2016 30 6654 6661 10.1021/acs.energyfuels.6b01265
-
(2016)
Energy Fuels
, vol.30
, pp. 6654-6661
-
-
Hathaway, B.J.1
Bala Chandran, R.2
Gladen, A.C.3
Chase, T.R.4
Davidson, J.H.5
-
11
-
-
0030187438
-
Solar photoproduction of hydrogen: A review
-
J. R. Bolton Solar photoproduction of hydrogen: A review Sol. Energy 1996 57 37 50 10.1016/0038-092X(96)00032-1
-
(1996)
Sol. Energy
, vol.57
, pp. 37-50
-
-
Bolton, J.R.1
-
12
-
-
84941690718
-
Experimental Demonstrations of Spontaneous, Solar-Driven Photoelectrochemical Water Splitting
-
J. W. Ager III M. Shaner K. Walczak I. D. Sharp S. Ardo Experimental Demonstrations of Spontaneous, Solar-Driven Photoelectrochemical Water Splitting Energy Environ. Sci. 2015 8 2811 2824 10.1039/C5EE00457H
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 2811-2824
-
-
Ager, J.W.1
Shaner, M.2
Walczak, K.3
Sharp, I.D.4
Ardo, S.5
-
13
-
-
84940981520
-
Artificial photosynthesis: Where are we now? Where can we go?
-
R. L. House N. Y. M. Iha R. L. Coppo L. Alibabaei B. D. Sherman P. Kang et al., Artificial photosynthesis: Where are we now? Where can we go? J. Photochem. Photobiol., C 2015 25 32 45 10.1016/j.jphotochemrev.2015.08.002
-
(2015)
J. Photochem. Photobiol., C
, vol.25
, pp. 32-45
-
-
House, R.L.1
Iha, N.Y.M.2
Coppo, R.L.3
Alibabaei, L.4
Sherman, B.D.5
Kang, P.6
-
14
-
-
84938818763
-
An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation
-
M. A. Modestino S. Haussener An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation Annu. Rev. Chem. Biomol. Eng. 2015 6 13 34 10.1146/annurev-chembioeng-061114-123357
-
(2015)
Annu. Rev. Chem. Biomol. Eng.
, vol.6
, pp. 13-34
-
-
Modestino, M.A.1
Haussener, S.2
-
15
-
-
84979732821
-
Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices
-
C. Xiang A. Z. Weber S. Ardo A. Berger Y. Chen R. Coridan et al., Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices Angew. Chem., Int. Ed. 2016 55 12974 12988 10.1002/anie.201510463
-
(2016)
Angew. Chem., Int. Ed.
, vol.55
, pp. 12974-12988
-
-
Xiang, C.1
Weber, A.Z.2
Ardo, S.3
Berger, A.4
Chen, Y.5
Coridan, R.6
-
16
-
-
35348875044
-
Electrochemical Photolysis of Water at a Semiconductor Electrode
-
A. Fujishima K. Honda Electrochemical Photolysis of Water at a Semiconductor Electrode Nature 1972 238 37 38 10.1038/238037a0
-
(1972)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
18
-
-
77956838396
-
Photocatalytic Water Splitting: Recent Progress and Future Challenges
-
K. Maeda K. Domen Photocatalytic Water Splitting: Recent Progress and Future Challenges J. Phys. Chem. Lett. 2010 1 2655 2661 10.1021/jz1007966
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, pp. 2655-2661
-
-
Maeda, K.1
Domen, K.2
-
19
-
-
84905734811
-
Boosting the Efficiency of Suspended Photocatalysts for Overall Water Splitting
-
F. E. Osterloh Boosting the Efficiency of Suspended Photocatalysts for Overall Water Splitting J. Phys. Chem. Lett. 2014 5 2510 2511 10.1021/jz501342j
-
(2014)
J. Phys. Chem. Lett.
, vol.5
, pp. 2510-2511
-
-
Osterloh, F.E.1
-
21
-
-
0035254142
-
High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production
-
O. Khaselev High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production Int. J. Hydrogen Energy 2001 26 127 132 10.1016/S0360-3199(00)00039-2
-
(2001)
Int. J. Hydrogen Energy
, vol.26
, pp. 127-132
-
-
Khaselev, O.1
-
22
-
-
80555150640
-
Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts
-
S. Y. Reece J. A. Hamel K. Sung T. D. Jarvi A. J. Esswein J. J. H. Pijpers et al., Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts Science 2011 334 645 648 10.1126/science.1209816
-
(2011)
Science
, vol.334
, pp. 645-648
-
-
Reece, S.Y.1
Hamel, J.A.2
Sung, K.3
Jarvi, T.D.4
Esswein, A.J.5
Pijpers, J.J.H.6
-
23
-
-
84922897090
-
Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System
-
K. Walczak Y. Chen C. Karp J. W. Beeman M. Shaner J. Spurgeon et al., Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System ChemSusChem 2015 8 544 551 10.1002/cssc.201402896
-
(2015)
ChemSusChem
, vol.8
, pp. 544-551
-
-
Walczak, K.1
Chen, Y.2
Karp, C.3
Beeman, J.W.4
Shaner, M.5
Spurgeon, J.6
-
24
-
-
84890537516
-
Robust production of purified H 2 in a stable, self-regulating, and continuously operating solar fuel generator
-
M. A. Modestino K. A. Walczak A. Berger C. M. Evans S. Haussener C. Koval et al., Robust production of purified H 2 in a stable, self-regulating, and continuously operating solar fuel generator Energy Environ. Sci. 2014 7 297 301 10.1039/C3EE43214A
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 297-301
-
-
Modestino, M.A.1
Walczak, K.A.2
Berger, A.3
Evans, C.M.4
Haussener, S.5
Koval, C.6
-
25
-
-
0035398718
-
Over 18% solar energy conversion to generation of hydrogen fuel; Theory and experiment for efficient solar water splitting
-
S. Licht B. Wang S. Mukerji T. Soga M. Umeno H. Tributsch Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting Int. J. Hydrogen Energy 2001 26 653 659 10.1016/S0360-3199(00)00133-6
-
(2001)
Int. J. Hydrogen Energy
, vol.26
, pp. 653-659
-
-
Licht, S.1
Wang, B.2
Mukerji, S.3
Soga, T.4
Umeno, M.5
Tributsch, H.6
-
26
-
-
84994018369
-
Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
-
J. Jia L. C. Seitz J. D. Benck Y. Huo Y. Chen J. W. D. Ng et al., Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30% Nat. Commun. 2016 7 13237 10.1038/ncomms13237
-
(2016)
Nat. Commun.
, vol.7
, pp. 13237
-
-
Jia, J.1
Seitz, L.C.2
Benck, J.D.3
Huo, Y.4
Chen, Y.5
Ng, J.W.D.6
-
27
-
-
84883669048
-
An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
-
S. Hu C. Xiang S. Haussener A. D. Berger N. S. Lewis An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems Energy Environ. Sci. 2013 6 2984 10.1039/c3ee40453f
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2984
-
-
Hu, S.1
Xiang, C.2
Haussener, S.3
Berger, A.D.4
Lewis, N.S.5
-
28
-
-
84870900511
-
Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems
-
S. Haussener C. Xiang J. M. Spurgeon S. Ardo N. S. Lewis A. Z. Weber Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems Energy Environ. Sci. 2012 5 9922 10.1039/c2ee23187e
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 9922
-
-
Haussener, S.1
Xiang, C.2
Spurgeon, J.M.3
Ardo, S.4
Lewis, N.S.5
Weber, A.Z.6
-
29
-
-
84887858384
-
Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems
-
S. Haussener S. Hu C. Xiang A. Z. Weber N. S. Lewis Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems Energy Environ. Sci. 2013 6 3605 10.1039/c3ee41302k
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3605
-
-
Haussener, S.1
Hu, S.2
Xiang, C.3
Weber, A.Z.4
Lewis, N.S.5
-
30
-
-
84887891573
-
Modeling an integrated photoelectrolysis system sustained by water vapor
-
C. Xiang Y. Chen N. S. Lewis Modeling an integrated photoelectrolysis system sustained by water vapor Energy Environ. Sci. 2013 6 3713 10.1039/c3ee42143k
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3713
-
-
Xiang, C.1
Chen, Y.2
Lewis, N.S.3
-
31
-
-
84940515656
-
An electrochemical engineering assessment of the operational conditions and constraints for solar-driven water-splitting systems at near-neutral pH
-
M. R. Singh K. Papadantonakis C. Xiang N. S. Lewis An electrochemical engineering assessment of the operational conditions and constraints for solar-driven water-splitting systems at near-neutral pH Energy Environ. Sci. 2015 8 2760 2767 10.1039/C5EE01721A
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 2760-2767
-
-
Singh, M.R.1
Papadantonakis, K.2
Xiang, C.3
Lewis, N.S.4
-
32
-
-
84964678024
-
A Computational Study of Optically Concentrating, Solar-Fuels Generators from Annual Thermal- and Fuel-Production Efficiency Perspectives
-
J. C. Stevens A. Z. Weber A Computational Study of Optically Concentrating, Solar-Fuels Generators from Annual Thermal- and Fuel-Production Efficiency Perspectives J. Electrochem. Soc. 2016 163 H475 H484 10.1149/2.0121607jes
-
(2016)
J. Electrochem. Soc.
, vol.163
, pp. H475-H484
-
-
Stevens, J.C.1
Weber, A.Z.2
-
33
-
-
84866841577
-
Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves
-
Y. Surendranath D. K. Bediako D. G. Nocera Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves Proc. Natl. Acad. Sci. U. S. A. 2012 109 15617 15621 10.1073/pnas.1118341109
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 15617-15621
-
-
Surendranath, Y.1
Bediako, D.K.2
Nocera, D.G.3
-
34
-
-
84987719024
-
Integrated Photo-Electrochemical Solar Fuel Generators under Concentrated Irradiation
-
S. Tembhurne S. Haussener Integrated Photo-Electrochemical Solar Fuel Generators under Concentrated Irradiation J. Electrochem. Soc. 2016 163 H988 H998 10.1149/2.0311610jes
-
(2016)
J. Electrochem. Soc.
, vol.163
, pp. H988-H998
-
-
Tembhurne, S.1
Haussener, S.2
-
35
-
-
85040928102
-
-
Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production, Virginia, 2009
-
B. D. James, G. N. Baum, J. Perez and K. N. Baum, Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production, Virginia, 2009, http://energy.gov/eere/fuelcells/downloads/technoeconomic-analysis-photoelectrochemical-pec-hydrogen-production
-
-
-
James, B.D.1
Baum, G.N.2
Perez, J.3
Baum, K.N.4
-
36
-
-
84883008345
-
Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
-
B. A. Pinaud J. D. Benck L. C. Seitz A. J. Forman Z. Chen T. G. Deutsch et al., Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry Energy Environ. Sci. 2013 6 1983 10.1039/c3ee40831k
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 1983
-
-
Pinaud, B.A.1
Benck, J.D.2
Seitz, L.C.3
Forman, A.J.4
Chen, Z.5
Deutsch, T.G.6
-
37
-
-
84978378771
-
A comparative technoeconomic analysis of renewable hydrogen production using solar energy
-
M. R. Shaner H. A. Atwater N. S. Lewis E. W. McFarland A comparative technoeconomic analysis of renewable hydrogen production using solar energy Energy Environ. Sci. 2016 9 2354 2371 10.1039/C5EE02573G
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 2354-2371
-
-
Shaner, M.R.1
Atwater, H.A.2
Lewis, N.S.3
McFarland, E.W.4
-
38
-
-
84960153588
-
Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%
-
Q. Wang T. Hisatomi Q. Jia H. Tokudome M. Zhong C. Wang et al., Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1% Nat. Mater. 2016 15 611 615 10.1038/nmat4589
-
(2016)
Nat. Mater.
, vol.15
, pp. 611-615
-
-
Wang, Q.1
Hisatomi, T.2
Jia, Q.3
Tokudome, H.4
Zhong, M.5
Wang, C.6
-
39
-
-
85011324170
-
Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure
-
Q. Wang T. Hisatomi Y. Suzuki Z. Pan J. Seo M. Katayama et al., Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure J. Am. Chem. Soc. 2017 139 1675 1683 10.1021/jacs.6b12164
-
(2017)
J. Am. Chem. Soc.
, vol.139
, pp. 1675-1683
-
-
Wang, Q.1
Hisatomi, T.2
Suzuki, Y.3
Pan, Z.4
Seo, J.5
Katayama, M.6
-
43
-
-
77952567707
-
Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst
-
K. Maeda M. Higashi D. Lu R. Abe K. Domen Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst J. Am. Chem. Soc. 2010 132 5858 5868 10.1021/ja1009025
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 5858-5868
-
-
Maeda, K.1
Higashi, M.2
Lu, D.3
Abe, R.4
Domen, K.5
-
44
-
-
80052735316
-
A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting
-
S.-C. Yu C.-W. Huang C.-H. Liao J. C. S. Wu S.-T. Chang K.-H. Chen A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting J. Membr. Sci. 2011 382 291 299 10.1016/j.memsci.2011.08.022
-
(2011)
J. Membr. Sci.
, vol.382
, pp. 291-299
-
-
Yu, S.-C.1
Huang, C.-W.2
Liao, C.-H.3
Wu, J.C.S.4
Chang, S.-T.5
Chen, K.-H.6
-
45
-
-
74449090305
-
Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting
-
C.-C. Lo C.-W. Huang C.-H. Liao J. C. S. Wu Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting Int. J. Hydrogen Energy 2010 35 1523 1529 10.1016/j.ijhydene.2009.12.032
-
(2010)
Int. J. Hydrogen Energy
, vol.35
, pp. 1523-1529
-
-
Lo, C.-C.1
Huang, C.-W.2
Liao, C.-H.3
Wu, J.C.S.4
-
46
-
-
84894122359
-
Rhodium-Doped Barium Titanate Perovskite as a Stable p-Type Semiconductor Photocatalyst for Hydrogen Evolution under Visible Light
-
K. Maeda Rhodium-Doped Barium Titanate Perovskite as a Stable p-Type Semiconductor Photocatalyst for Hydrogen Evolution under Visible Light ACS Appl. Mater. Interfaces 2014 6 2167 2173 10.1021/am405293e
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 2167-2173
-
-
Maeda, K.1
-
48
-
-
84884308016
-
3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting
-
3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting J. Mater. Chem. A 2013 1 12327 10.1039/c3ta12803b
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 12327
-
-
Kato, H.1
Sasaki, Y.2
Shirakura, N.3
Kudo, A.4
-
49
-
-
0037424723
-
2 photocatalyst: Suppression of backward reaction
-
2 photocatalyst: suppression of backward reaction Chem. Phys. Lett. 2003 371 360 364 10.1016/S0009-2614(03)00252-5
-
(2003)
Chem. Phys. Lett.
, vol.371
, pp. 360-364
-
-
Abe, R.1
Sayama, K.2
Arakawa, H.3
-
50
-
-
51349131311
-
2+ electron mediator on overall water splitting under visible light irradiation
-
2+ electron mediator on overall water splitting under visible light irradiation J. Catal. 2008 259 133 137 10.1016/j.jcat.2008.07.017
-
(2008)
J. Catal.
, vol.259
, pp. 133-137
-
-
Sasaki, Y.1
Iwase, A.2
Kato, H.3
Kudo, A.4
-
51
-
-
84904703638
-
3 as a Hydrogen Evolution Photocatalyst in Z-Scheme Overall Water Splitting under Visible Light Irradiation
-
3 as a Hydrogen Evolution Photocatalyst in Z-Scheme Overall Water Splitting under Visible Light Irradiation Chem. Mater. 2014 26 4144 4150 10.1021/cm5011983
-
(2014)
Chem. Mater.
, vol.26
, pp. 4144-4150
-
-
Wang, Q.1
Hisatomi, T.2
Ma, S.S.K.3
Li, Y.4
Domen, K.5
-
52
-
-
84895060841
-
Overcoming mass-transfer limitations in the Dual Bed Colloidal Suspension Reactor
-
R. R. Jaini T. F. Fuller Overcoming mass-transfer limitations in the Dual Bed Colloidal Suspension Reactor Int. J. Hydrogen Energy 2014 39 2462 2471 10.1016/j.ijhydene.2013.12.018
-
(2014)
Int. J. Hydrogen Energy
, vol.39
, pp. 2462-2471
-
-
Jaini, R.R.1
Fuller, T.F.2
-
53
-
-
0034660680
-
Evaluation of Radiation Absorption in Slurry Photocatalytic Reactors. 1. Assessment of Methods in Use and New Proposal
-
R. J. Brandi O. M. Alfano A. E. Cassano Evaluation of Radiation Absorption in Slurry Photocatalytic Reactors. 1. Assessment of Methods in Use and New Proposal Environ. Sci. Technol. 2000 34 2623 2630 10.1021/es9909428
-
(2000)
Environ. Sci. Technol.
, vol.34
, pp. 2623-2630
-
-
Brandi, R.J.1
Alfano, O.M.2
Cassano, A.E.3
-
54
-
-
84949908362
-
A probabilistic approach to radiant field modeling in dense particulate systems
-
A. Busciglio O. M. Alfano F. Scargiali A. Brucato A probabilistic approach to radiant field modeling in dense particulate systems Chem. Eng. Sci. 2015 142 79 88 10.1016/j.ces.2015.11.025
-
(2015)
Chem. Eng. Sci.
, vol.142
, pp. 79-88
-
-
Busciglio, A.1
Alfano, O.M.2
Scargiali, F.3
Brucato, A.4
-
55
-
-
24144476963
-
Experimental Method to Evaluate the Optical Properties of Aqueous Titanium Dioxide Suspensions
-
M. L. Satuf R. J. Brandi A. E. Cassano O. M. Alfano Experimental Method to Evaluate the Optical Properties of Aqueous Titanium Dioxide Suspensions Ind. Eng. Chem. Res. 2005 44 6643 6649 10.1021/ie050365y
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 6643-6649
-
-
Satuf, M.L.1
Brandi, R.J.2
Cassano, A.E.3
Alfano, O.M.4
-
56
-
-
38649088534
-
Mass transfer limitations in photocatalytic reactors employing titanium dioxide suspensions: II. External and internal particle constrains for the reaction
-
M. de los M. Ballari R. Brandi O. Alfano A. Cassano Mass transfer limitations in photocatalytic reactors employing titanium dioxide suspensions: II. External and internal particle constrains for the reaction Chem. Eng. J. 2008 136 242 255 10.1016/j.cej.2007.03.031
-
(2008)
Chem. Eng. J.
, vol.136
, pp. 242-255
-
-
De Los Ballari M, M.1
Brandi, R.2
Alfano, O.3
Cassano, A.4
-
57
-
-
0033750726
-
Reaction engineering of suspended solid heterogeneous photocatalytic reactors
-
A. E. Cassano O. M. Alfano Reaction engineering of suspended solid heterogeneous photocatalytic reactors Catal. Today 2000 58 167 197 10.1016/S0920-5861(00)00251-0
-
(2000)
Catal. Today
, vol.58
, pp. 167-197
-
-
Cassano, A.E.1
Alfano, O.M.2
-
58
-
-
84994496651
-
Z-Scheme Photocatalytic Systems for Promoting Photocatalytic Performance: Recent Progress and Future Challenges
-
H. Li W. Tu Y. Zhou Z. Zou Z-Scheme Photocatalytic Systems for Promoting Photocatalytic Performance: Recent Progress and Future Challenges Adv. Sci. 2016 1500389 10.1002/advs.201500389
-
(2016)
Adv. Sci.
, pp. 1500389
-
-
Li, H.1
Tu, W.2
Zhou, Y.3
Zou, Z.4
-
59
-
-
67649354052
-
-
Elsevier, 10.1016/S0065-2377(09)00404-9
-
R. M. Navarro, F. del Valle, J. A. Villoria de la Mano, M. C. Álvarez-Galván and J. L. G. Fierro, Advances in Chemical Engineering-Photocatalytic Technologies, Elsevier, 2009 10.1016/S0065-2377(09)00404-9
-
(2009)
Advances in Chemical Engineering-Photocatalytic Technologies
-
-
Navarro, R.M.1
Del Valle, F.2
Villoria De La Mano, J.A.3
Álvarez-Galván, M.C.4
Fierro, J.L.G.5
-
60
-
-
0342265131
-
The absolute energy positions of conduction and valence bands of selected semiconducting minerals
-
Y. Xu M. A. A. Schoonen The absolute energy positions of conduction and valence bands of selected semiconducting minerals Am. Mineral. 2000 85 543 556 10.2138/am-2000-0416
-
(2000)
Am. Mineral.
, vol.85
, pp. 543-556
-
-
Xu, Y.1
Schoonen, M.A.A.2
-
61
-
-
84874491562
-
Progress in bismuth vanadate photoanodes for use in solar water oxidation
-
Y. Park K. J. McDonald K.-S. Choi Progress in bismuth vanadate photoanodes for use in solar water oxidation Chem. Soc. Rev. 2013 42 2321 2337 10.1039/C2CS35260E
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 2321-2337
-
-
Park, Y.1
McDonald, K.J.2
Choi, K.-S.3
-
62
-
-
84950290985
-
2 using heterogeneous catalysts with controlled nanostructures
-
2 using heterogeneous catalysts with controlled nanostructures Chem. Commun. 2016 52 35 59 10.1039/C5CC07613G
-
(2016)
Chem. Commun.
, vol.52
, pp. 35-59
-
-
Xie, S.1
Zhang, Q.2
Liu, G.3
Wang, Y.4
-
65
-
-
84944401196
-
3: A Hybrid Density Functional Study
-
3: A Hybrid Density Functional Study J. Phys. Chem. C 2015 119 23503 23514 10.1021/acs.jpcc.5b06667
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 23503-23514
-
-
Modak, B.1
Ghosh, S.K.2
-
66
-
-
0003472060
-
-
Butterworths, London, accessed July 27, 2017
-
D. Perrin, Dissociation constants of organic bases in aqueous solution, Butterworths, London, 1972, http://www.worldcat.org/title/dissociation-constants-of-organic-bases-in-aqueous-solution/oclc/878462380?referer=null&ht=edition, accessed July 27, 2017
-
(1972)
Dissociation Constants of Organic Bases in Aqueous Solution
-
-
Perrin, D.1
-
67
-
-
0003669158
-
-
Pergamon Press, Oxford; New York, accessed July 27, 2017
-
E. P. Serjeant and B. Dempsey, Ionisation constants of organic acids in aqueous solution, Pergamon Press, Oxford; New York, 1979, http://www.worldcat.org/title/ionisation-constants-of-organic-acids-in-aqueous-solution/oclc/4494248, accessed July 27, 2017
-
(1979)
Ionisation Constants of Organic Acids in Aqueous Solution
-
-
Serjeant, E.P.1
Dempsey, B.2
-
70
-
-
84962468933
-
An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples
-
B. Yang L. Hoober-Burkhardt F. Wang G. K. Surya Prakash S. R. Narayanan An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples J. Electrochem. Soc. 2014 161 A1371 A1380 10.1149/2.1001409jes
-
(2014)
J. Electrochem. Soc.
, vol.161
, pp. A1371-A1380
-
-
Yang, B.1
Hoober-Burkhardt, L.2
Wang, F.3
Surya Prakash, G.K.4
Narayanan, S.R.5
-
73
-
-
84887680701
-
Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
-
C. C. L. McCrory S. Jung J. C. Peters T. F. Jaramillo Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction J. Am. Chem. Soc. 2013 135 16977 16987 10.1021/ja407115p
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 16977-16987
-
-
McCrory, C.C.L.1
Jung, S.2
Peters, J.C.3
Jaramillo, T.F.4
-
74
-
-
33750804271
-
Work function, electronegativity, and electrochemical behaviour of metals
-
S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals J. Electroanal. Chem. Interfacial Electrochem. 1972 39 163 184 10.1016/S0022-0728(72)80485-6
-
(1972)
J. Electroanal. Chem. Interfacial Electrochem.
, vol.39
, pp. 163-184
-
-
Trasatti, S.1
-
76
-
-
84918786848
-
The Radiative Transfer Equation in Participating Media(RTE)
-
Academic Press
-
M. F. Modest, The Radiative Transfer Equation in Participating Media(RTE), Radiat. Heat Transf., Second, Academic Press, 2003, pp. 279-302
-
(2003)
Radiat. Heat Transf., Second
, pp. 279-302
-
-
Modest, M.F.1
-
77
-
-
33748393916
-
Absorption and Scattering Coefficients of Titanium Dioxide Particulate Suspensions in Water
-
M. I. Cabrera O. M. Alfano A. E. Cassano Absorption and Scattering Coefficients of Titanium Dioxide Particulate Suspensions in Water J. Phys. Chem. 1996 100 20043 20050 10.1021/jp962095q
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 20043-20050
-
-
Cabrera, M.I.1
Alfano, O.M.2
Cassano, A.E.3
-
78
-
-
0003482665
-
-
Infinitely Dilute Solutions, John Wiley & Sons, Inc., Hoboken, NJ, USA, 3rd edn
-
J. Newman and K. E. Thomas-Alyea, Infinitely Dilute Solutions, Electrochemical Systems, John Wiley & Sons, Inc., Hoboken, NJ, USA, 3rd edn, 2004, pp. 271-289
-
(2004)
Electrochemical Systems
, pp. 271-289
-
-
Newman, J.1
Thomas-Alyea, K.E.2
-
79
-
-
79951530216
-
Thermochemistry, Electrochemistry and Solution Chemistry
-
CRC Press, Baca Raton, 95th edn
-
W. M. Haynes, Thermochemistry, Electrochemistry and Solution Chemistry, CRC Handbook of Chemistry and Physics, CRC Press, Baca Raton, 95th edn, 2014, pp. 154-190
-
(2014)
CRC Handbook of Chemistry and Physics
, pp. 154-190
-
-
Haynes, W.M.1
-
83
-
-
0015604413
-
Optical Constants of Water in the 200 nm to 200 μm Wavelength Region
-
G. M. Hale M. R. Querry Optical Constants of Water in the 200 nm to 200 μm Wavelength Region Appl. Opt. 1973 12 555 10.1364/AO.12.000555
-
(1973)
Appl. Opt.
, vol.12
, pp. 555
-
-
Hale, G.M.1
Querry, M.R.2
-
85
-
-
0242365543
-
Quantum yield of the iodide-iodate chemical actinometer: Dependence on wavelength and concentrations
-
accessed June 29, 2016
-
R. O. Rahn M. I. Stefan J. R. Bolton E. Goren P.-S. Shaw K. R. Lykke Quantum yield of the iodide-iodate chemical actinometer: dependence on wavelength and concentrations Photochem. Photobiol. 2003 78 146 152
-
(2003)
Photochem. Photobiol.
, vol.78
, pp. 146-152
-
-
Rahn, R.O.1
Stefan, M.I.2
Bolton, J.R.3
Goren, E.4
Shaw, P.-S.5
Lykke, K.R.6
-
87
-
-
33646179227
-
-
ed. P. J. Linstrom and W. G. Mallard, NIST Chem. WebBook, NIST Stand. Ref. Database Number 69, Gaithersburg, accessed June 2017
-
V. Talrose, A. N. Yermakov, A. A. Usov, A. A. Goncharova, A. N. Leskin and N. A. Messineva, et al., in UV/Visible Spectra, ed., P. J. Linstrom, and, W. G. Mallard, NIST Chem. WebBook, NIST Stand. Ref. Database Number 69, Gaithersburg, http://webbook.nist.gov, accessed June 2017
-
UV/Visible Spectra
-
-
Talrose, V.1
Yermakov, A.N.2
Usov, A.A.3
Goncharova, A.A.4
Leskin, A.N.5
Messineva, N.A.6
-
88
-
-
84885624160
-
Current-voltage characteristics of coupled photodiode-electrocatalyst devices
-
M. R. Shaner K. T. Fountaine H.-J. Lewerenz Current-voltage characteristics of coupled photodiode-electrocatalyst devices Appl. Phys. Lett. 2013 103 143905 10.1063/1.4822179
-
(2013)
Appl. Phys. Lett.
, vol.103
, pp. 143905
-
-
Shaner, M.R.1
Fountaine, K.T.2
Lewerenz, H.-J.3
-
89
-
-
84934274300
-
-
ed. K. D. Karlin, Prog. Inorg. Chem., John Wiley & Sons, Inc., Hoboken, 41, 10.1002/9780470166420.ch2
-
M. X. Tan, P. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E. Stanton and N. S. Lewis, in Principles and Applications of Semiconductor Photoelectrochemistry, ed., K. D. Karlin, Prog. Inorg. Chem., John Wiley & Sons, Inc., Hoboken, 1984, vol. 41, pp. 21-144 10.1002/9780470166420.ch2
-
(1984)
Principles and Applications of Semiconductor Photoelectrochemistry
, pp. 21-144
-
-
Tan, M.X.1
Laibinis, P.E.2
Nguyen, S.T.3
Kesselman, J.M.4
Stanton, C.E.5
Lewis, N.S.6
-
90
-
-
0036529301
-
Thermodynamics and reciprocity of solar energy conversion
-
T. Markvart P. T. Landsberg Thermodynamics and reciprocity of solar energy conversion Phys. E 2002 14 71 77 10.1016/S1386-9477(02)00352-1
-
(2002)
Phys. e
, vol.14
, pp. 71-77
-
-
Markvart, T.1
Landsberg, P.T.2
-
91
-
-
85065073926
-
-
Electrochem. Syst., John Wiley & Sons, Inc., Hoboken, NJ, USA, 3rd edn
-
J. Newman and K. E. Thomas-Alyea, Electrode Kinetics, Electrochem. Syst., John Wiley & Sons, Inc., Hoboken, NJ, USA, 3rd edn, 2004, pp. 203-230
-
(2004)
Electrode Kinetics
, pp. 203-230
-
-
Newman, J.1
Thomas-Alyea, K.E.2
-
93
-
-
0032497547
-
Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies
-
M. Grätzel U. Bach D. Lupo P. Comte J. E. Moser F. Weissörtel et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies Nature 1998 395 583 585 10.1038/26936
-
(1998)
Nature
, vol.395
, pp. 583-585
-
-
Grätzel, M.1
Bach, U.2
Lupo, D.3
Comte, P.4
Moser, J.E.5
Weissörtel, F.6
-
95
-
-
79955696615
-
Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays
-
J. M. Spurgeon M. G. Walter J. Zhou P. A. Kohl N. S. Lewis E. L. Warren et al., Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays Energy Environ. Sci. 2011 4 1772 10.1039/c1ee01028j
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1772
-
-
Spurgeon, J.M.1
Walter, M.G.2
Zhou, J.3
Kohl, P.A.4
Lewis, N.S.5
Warren, E.L.6
-
97
-
-
84879106363
-
Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting
-
C. Liu J. Tang H. M. Chen B. Liu P. Yang A. Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting Nano Lett. 2013 13 2989 2992 10.1021/nl401615t
-
(2013)
Nano Lett.
, vol.13
, pp. 2989-2992
-
-
Liu, C.1
Tang, J.2
Chen, H.M.3
Liu, B.4
Yang, P.5
Fully, A.6
-
98
-
-
85032805002
-
Deconvoluting the influences of 3D structure on the performance of photoelectrodes for solar-driven water splitting, Sustain
-
D. V. Esposito Y. Lee H. Yoon P. M. Haney N. Y. Labrador T. P. Moffat et al., Deconvoluting the influences of 3D structure on the performance of photoelectrodes for solar-driven water splitting, Sustain Energy Fuels 2017 1 154 173 10.1039/C6SE00073H
-
(2017)
Energy Fuels
, vol.1
, pp. 154-173
-
-
Esposito, D.V.1
Lee, Y.2
Yoon, H.3
Haney, P.M.4
Labrador, N.Y.5
Moffat, T.P.6
|