메뉴 건너뛰기




Volumn 5, Issue 3, 2016, Pages 261-287

A review and perspective of efficient hydrogen generation via solar thermal water splitting

Author keywords

[No Author keywords available]

Indexed keywords

HYDROGEN PRODUCTION; METALS; REDOX REACTIONS; SOLAR HEATING;

EID: 84930030775     PISSN: 20418396     EISSN: 2041840X     Source Type: Journal    
DOI: 10.1002/wene.174     Document Type: Review
Times cited : (229)

References (139)
  • 1
    • 36549019525 scopus 로고    scopus 로고
    • Exergy analysis of hydrogen production via steam methane reforming
    • Simpson AP, Lutz AE. Exergy analysis of hydrogen production via steam methane reforming. Int J Hydrogen Energy 2007, 32:4811-4820.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 4811-4820
    • Simpson, A.P.1    Lutz, A.E.2
  • 2
    • 0037332970 scopus 로고    scopus 로고
    • The hydrogen economy in the 21st century: a sustainable development scenario
    • Barreto L, Makihira A, Riahi K. The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrogen Energy 2003, 28:267-284.
    • (2003) Int J Hydrogen Energy , vol.28 , pp. 267-284
    • Barreto, L.1    Makihira, A.2    Riahi, K.3
  • 3
    • 0033310450 scopus 로고    scopus 로고
    • Prospects for building a hydrogen energy infrastructure
    • Ogden JM. Prospects for building a hydrogen energy infrastructure. Annu Rev Energy Environ 1999, 24:227-279.
    • (1999) Annu Rev Energy Environ , vol.24 , pp. 227-279
    • Ogden, J.M.1
  • 5
    • 17044439066 scopus 로고    scopus 로고
    • Solar thermochemical production of hydrogen--a review
    • Steinfeld A. Solar thermochemical production of hydrogen--a review. Solar Energy 2005, 78:603-615.
    • (2005) Solar Energy , vol.78 , pp. 603-615
    • Steinfeld, A.1
  • 6
    • 60749103376 scopus 로고    scopus 로고
    • Solar-thermal production of renewable hydrogen
    • Perkins C, Weimer AW. Solar-thermal production of renewable hydrogen. AICHE J 2009, 55:286-293.
    • (2009) AICHE J , vol.55 , pp. 286-293
    • Perkins, C.1    Weimer, A.W.2
  • 7
    • 57649107180 scopus 로고    scopus 로고
    • An overview of hydrogen production technologies
    • Holladay JD, Hu J, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today 2009, 139:244-260.
    • (2009) Catal Today , vol.139 , pp. 244-260
    • Holladay, J.D.1    Hu, J.2    King, D.L.3    Wang, Y.4
  • 8
    • 0035818994 scopus 로고    scopus 로고
    • Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst
    • Zou Z, Ye J, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414:625-627.
    • (2001) Nature , vol.414 , pp. 625-627
    • Zou, Z.1    Ye, J.2    Sayama, K.3    Arakawa, H.4
  • 9
    • 33750458683 scopus 로고    scopus 로고
    • Powering the planet: chemical challenges in solar energy utilization
    • Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 2006, 103:15729-15735.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 15729-15735
    • Lewis, N.S.1    Nocera, D.G.2
  • 10
    • 84874874046 scopus 로고    scopus 로고
    • Factors affecting the efficiency of solar driven metal oxide thermochemical cycles
    • Siegel NP, Miller JE, Ermanoski I, Diver RB, Stechel EB. Factors affecting the efficiency of solar driven metal oxide thermochemical cycles. Ind Eng Chem Res 2013, 52:3276-3286.
    • (2013) Ind Eng Chem Res , vol.52 , pp. 3276-3286
    • Siegel, N.P.1    Miller, J.E.2    Ermanoski, I.3    Diver, R.B.4    Stechel, E.B.5
  • 12
    • 9344230407 scopus 로고    scopus 로고
    • Likely near-term solar-thermal water splitting technologies
    • Perkins C, Weimer AW. Likely near-term solar-thermal water splitting technologies. Int J Hydrogen Energy 2004, 29:1587-1599.
    • (2004) Int J Hydrogen Energy , vol.29 , pp. 1587-1599
    • Perkins, C.1    Weimer, A.W.2
  • 13
    • 33747034764 scopus 로고    scopus 로고
    • Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy
    • Abanades S, Charvin P, Flamant G, Neveu P. Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 2006, 31:2805-2822.
    • (2006) Energy , vol.31 , pp. 2805-2822
    • Abanades, S.1    Charvin, P.2    Flamant, G.3    Neveu, P.4
  • 15
    • 53449094108 scopus 로고    scopus 로고
    • Thermochemical hydrogen production with a copper-chlorine cycle. I: oxygen release from copper oxychloride decomposition
    • Naterer GF, Gabriel K, Wang ZL, Daggupati VN, Gravelsins R. Thermochemical hydrogen production with a copper-chlorine cycle. I: oxygen release from copper oxychloride decomposition. Int J Hydrogen Energy 2008, 33:5439-5450.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 5439-5450
    • Naterer, G.F.1    Gabriel, K.2    Wang, Z.L.3    Daggupati, V.N.4    Gravelsins, R.5
  • 17
    • 33847400607 scopus 로고    scopus 로고
    • Flowsheet study of the thermochemical water-splitting iodine-sulfur process for effective hydrogen production
    • Kasahara S, Kubo S, Hino R, Onuki K, Nomura M, Nakao S. Flowsheet study of the thermochemical water-splitting iodine-sulfur process for effective hydrogen production. Int J Hydrogen Energy 2007, 32:489-496.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 489-496
    • Kasahara, S.1    Kubo, S.2    Hino, R.3    Onuki, K.4    Nomura, M.5    Nakao, S.6
  • 18
    • 29144475206 scopus 로고    scopus 로고
    • Efficiency of hydrogen production systems using alternative nuclear energy technologies
    • Yildiz B, Kazimi MS. Efficiency of hydrogen production systems using alternative nuclear energy technologies. Int J Hydrogen Energy 2006, 31:77-92.
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 77-92
    • Yildiz, B.1    Kazimi, M.S.2
  • 19
    • 84886722370 scopus 로고    scopus 로고
    • Hydrogen production via thermochemical water-splitting by lithium redox reaction
    • Nakamura N, Miyaoka H, Ichikawa T, Kojima Y. Hydrogen production via thermochemical water-splitting by lithium redox reaction. J Alloys Compd 2013, 580:S410-S413.
    • (2013) J Alloys Compd , vol.580 , pp. S410-S413
    • Nakamura, N.1    Miyaoka, H.2    Ichikawa, T.3    Kojima, Y.4
  • 22
    • 77951118709 scopus 로고    scopus 로고
    • 3 thermochemical water-splitting cycle. Part 1: experimental
    • 3 thermochemical water-splitting cycle. Part 1: experimental. Chem Eng Sci 2010, 65:3709-3717.
    • (2010) Chem Eng Sci , vol.65 , pp. 3709-3717
    • Francis, T.M.1    Lichty, P.R.2    Weimer, A.W.3
  • 25
    • 84893135497 scopus 로고    scopus 로고
    • Considerations in the design of materials for solar-driven fuel production using metal-oxide thermochemical cycles
    • Miller JE, McDaniel AH, Allendorf MD. Considerations in the design of materials for solar-driven fuel production using metal-oxide thermochemical cycles. Adv Energy Mater 2014, 4:1300469.
    • (2014) Adv Energy Mater , vol.4 , pp. 1300469
    • Miller, J.E.1    McDaniel, A.H.2    Allendorf, M.D.3
  • 26
    • 0017574959 scopus 로고
    • Hydrogen production from water utilizing solar heat at high temperatures
    • Nakamura T. Hydrogen production from water utilizing solar heat at high temperatures. Solar Energy 1977, 19:467-475.
    • (1977) Solar Energy , vol.19 , pp. 467-475
    • Nakamura, T.1
  • 29
    • 84855596035 scopus 로고    scopus 로고
    • Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery
    • Lapp J, Davidson JH, Lipiński W. Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery. Energy 2012, 37:591-600.
    • (2012) Energy , vol.37 , pp. 591-600
    • Lapp, J.1    Davidson, J.H.2    Lipiński, W.3
  • 30
    • 84858411879 scopus 로고    scopus 로고
    • Thermodynamic analysis of cerium-based oxides for solar thermochemical fuel production
    • Scheffe JR, Steinfeld A. Thermodynamic analysis of cerium-based oxides for solar thermochemical fuel production. Energy Fuel 2012, 26:1928-1936.
    • (2012) Energy Fuel , vol.26 , pp. 1928-1936
    • Scheffe, J.R.1    Steinfeld, A.2
  • 32
    • 84886887780 scopus 로고    scopus 로고
    • High-temperature isothermal chemical cycling for solar-driven fuel production
    • Hao Y, Yang C-K, Haile SM. High-temperature isothermal chemical cycling for solar-driven fuel production. Phys Chem Chem Phys 2013, 15:17084-17092.
    • (2013) Phys Chem Chem Phys , vol.15 , pp. 17084-17092
    • Hao, Y.1    Yang, C.-K.2    Haile, S.M.3
  • 33
    • 84884510082 scopus 로고    scopus 로고
    • Thermodynamic analysis of isothermal redox cycling of ceria for solar fuel production
    • Bader R, Venstrom LJ, Davidson JH, Lipiński W. Thermodynamic analysis of isothermal redox cycling of ceria for solar fuel production. Energy Fuel 2013, 27:5533-5544.
    • (2013) Energy Fuel , vol.27 , pp. 5533-5544
    • Bader, R.1    Venstrom, L.J.2    Davidson, J.H.3    Lipiński, W.4
  • 35
    • 84903181322 scopus 로고    scopus 로고
    • Thermodynamic analysis of syngas production via the solar thermochemical cerium oxide redox cycle with methane-driven reduction
    • Krenzke PT, Davidson JH. Thermodynamic analysis of syngas production via the solar thermochemical cerium oxide redox cycle with methane-driven reduction. Energy Fuel 2014, 28:4088-4095.
    • (2014) Energy Fuel , vol.28 , pp. 4088-4095
    • Krenzke, P.T.1    Davidson, J.H.2
  • 36
    • 0027592410 scopus 로고
    • Model calculations on some feasible two-step water splitting processes
    • Lundberg M. Model calculations on some feasible two-step water splitting processes. Int J Hydrogen Energy 1993, 18:369-376.
    • (1993) Int J Hydrogen Energy , vol.18 , pp. 369-376
    • Lundberg, M.1
  • 37
    • 35848955627 scopus 로고    scopus 로고
    • Thermochemical cycles for high-temperature solar hydrogen production
    • Kodama T, Gokon N. Thermochemical cycles for high-temperature solar hydrogen production. Chem Rev 2007, 107:4048-4077.
    • (2007) Chem Rev , vol.107 , pp. 4048-4077
    • Kodama, T.1    Gokon, N.2
  • 38
    • 0036591726 scopus 로고    scopus 로고
    • Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions
    • Steinfeld A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrogen Energy 2002, 27:611-619.
    • (2002) Int J Hydrogen Energy , vol.27 , pp. 611-619
    • Steinfeld, A.1
  • 41
    • 80052194998 scopus 로고    scopus 로고
    • 2-splitting solar thermochemical cycle based on Zn/ZnO redox reactions
    • 2-splitting solar thermochemical cycle based on Zn/ZnO redox reactions. Materials 2010, 3:4922-4938.
    • (2010) Materials , vol.3 , pp. 4922-4938
    • Loutzenhiser, P.G.1    Meier, A.2    Steinfeld, A.3
  • 42
    • 0034698651 scopus 로고    scopus 로고
    • Thermogravimetric analysis of the ZnO/Zn water splitting cycle
    • Weidenkaff A, Reller A, Wokaun A, Steinfeld A. Thermogravimetric analysis of the ZnO/Zn water splitting cycle. Thermochim Acta 2000, 359:69-75.
    • (2000) Thermochim Acta , vol.359 , pp. 69-75
    • Weidenkaff, A.1    Reller, A.2    Wokaun, A.3    Steinfeld, A.4
  • 44
    • 54949091459 scopus 로고    scopus 로고
    • 2/SnO/Sn thermochemical systems for solar production of hydrogen
    • 2/SnO/Sn thermochemical systems for solar production of hydrogen. AICHE J 2008, 54:2759-2767.
    • (2008) AICHE J , vol.54 , pp. 2759-2767
    • Charvin, P.1    Abanades, S.2    Lemont, F.3    Flamant, G.4
  • 45
    • 67149102381 scopus 로고    scopus 로고
    • Kinetics of the thermal dissociation of ZnO exposed to concentrated solar irradiation using a solar-driven thermogravimeter in the 1800-2100K range
    • Schunk LO, Steinfeld A. Kinetics of the thermal dissociation of ZnO exposed to concentrated solar irradiation using a solar-driven thermogravimeter in the 1800-2100K range. AICHE J 2009, 55:1497-1504.
    • (2009) AICHE J , vol.55 , pp. 1497-1504
    • Schunk, L.O.1    Steinfeld, A.2
  • 46
    • 34748868473 scopus 로고    scopus 로고
    • Determination of aerosol kinetics of thermal ZnO dissociation by thermogravimetry
    • Perkins C, Lichty P, Weimer AW. Determination of aerosol kinetics of thermal ZnO dissociation by thermogravimetry. Chem Eng Sci 2007, 62:5952-5962.
    • (2007) Chem Eng Sci , vol.62 , pp. 5952-5962
    • Perkins, C.1    Lichty, P.2    Weimer, A.W.3
  • 48
    • 45849100500 scopus 로고    scopus 로고
    • A quenching apparatus for the gaseous products of the solar thermal dissociation of ZnO
    • Gstoehl D, Brambilla A, Schunk LO, Steinfeld A. A quenching apparatus for the gaseous products of the solar thermal dissociation of ZnO. J Mater Sci 2008, 43:4729-4736.
    • (2008) J Mater Sci , vol.43 , pp. 4729-4736
    • Gstoehl, D.1    Brambilla, A.2    Schunk, L.O.3    Steinfeld, A.4
  • 49
    • 0033688461 scopus 로고    scopus 로고
    • The kinetics of hydrogen production in the oxidation of liquid zinc with water vapor
    • Berman A, Epstein M. The kinetics of hydrogen production in the oxidation of liquid zinc with water vapor. Int J Hydrogen Energy 2000, 25:957-967.
    • (2000) Int J Hydrogen Energy , vol.25 , pp. 957-967
    • Berman, A.1    Epstein, M.2
  • 50
    • 84894617260 scopus 로고    scopus 로고
    • Quantum chemical calculations on the reaction of zinc and water in gas phase
    • Yang W, Han Z, Zhou J, Liu J, Cen K. Quantum chemical calculations on the reaction of zinc and water in gas phase. Combust Sci Technol 2013, 186:24-33.
    • (2013) Combust Sci Technol , vol.186 , pp. 24-33
    • Yang, W.1    Han, Z.2    Zhou, J.3    Liu, J.4    Cen, K.5
  • 51
    • 58749116108 scopus 로고    scopus 로고
    • 2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor
    • 2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor. Chem Eng Sci 2009, 64:1095-1101.
    • (2009) Chem Eng Sci , vol.64 , pp. 1095-1101
    • Melchior, T.1    Piatkowski, N.2    Steinfeld, A.3
  • 53
    • 84874550049 scopus 로고    scopus 로고
    • The kinetics of the heterogeneous oxidation of zinc vapor by carbon dioxide
    • Venstrom LJ, Davidson JH. The kinetics of the heterogeneous oxidation of zinc vapor by carbon dioxide. Chem Eng Sci 2013, 93:163-172.
    • (2013) Chem Eng Sci , vol.93 , pp. 163-172
    • Venstrom, L.J.1    Davidson, J.H.2
  • 55
    • 77955222832 scopus 로고    scopus 로고
    • Tin as a possible candidate for solar thermochemical redox process for hydrogen production
    • Vishnevetsky I, Epstein M. Tin as a possible candidate for solar thermochemical redox process for hydrogen production. J Solar Energy Eng 2009, 131:021007.
    • (2009) J Solar Energy Eng , vol.131
    • Vishnevetsky, I.1    Epstein, M.2
  • 56
    • 67649583827 scopus 로고    scopus 로고
    • Kinetic investigation of hydrogen generation from hydrolysis of SnO and Zn solar nanopowders
    • Chambon M, Abanades S, Flamant G. Kinetic investigation of hydrogen generation from hydrolysis of SnO and Zn solar nanopowders. Int J Hydrogen Energy 2009, 34:5326-5336.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 5326-5336
    • Chambon, M.1    Abanades, S.2    Flamant, G.3
  • 57
    • 84860371960 scopus 로고    scopus 로고
    • 2/SnO redox reactions: thermogravimetric analysis
    • 2/SnO redox reactions: thermogravimetric analysis. Int J Hydrogen Energy 2012, 37:8223-8231.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 8223-8231
    • Abanades, S.1
  • 59
    • 84867851906 scopus 로고    scopus 로고
    • Atomic layer deposited thin film metal oxides for fuel production in a solar cavity reactor
    • Lichty P, Liang X, Muhich C, Evanko B, Bingham C, Weimer AW. Atomic layer deposited thin film metal oxides for fuel production in a solar cavity reactor. Int J Hydrogen Energy 2012, 37:16888-16894.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 16888-16894
    • Lichty, P.1    Liang, X.2    Muhich, C.3    Evanko, B.4    Bingham, C.5    Weimer, A.W.6
  • 60
    • 84863369246 scopus 로고    scopus 로고
    • 2 at high temperature studied by thermogravimetric analysis and secondary ion mass spectrometry
    • 2 at high temperature studied by thermogravimetric analysis and secondary ion mass spectrometry. J Mater Chem 2012, 22:6726-6732.
    • (2012) J Mater Chem , vol.22 , pp. 6726-6732
    • Coker, E.N.1    Ohlhausen, J.A.2    Ambrosini, A.3    Miller, J.E.4
  • 61
    • 33947425167 scopus 로고    scopus 로고
    • Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production
    • Charvin P, Abanades S, Flamant G, Lemort F. Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production. Energy 2007, 32:1124-1133.
    • (2007) Energy , vol.32 , pp. 1124-1133
    • Charvin, P.1    Abanades, S.2    Flamant, G.3    Lemort, F.4
  • 62
    • 84874986518 scopus 로고    scopus 로고
    • Study of a magnetically stabilized porous structure for thermochemical water splitting via TGA, high-temperature-XRD, and SEM analyses
    • Allen KM, Mehdizadeh AM, Klausner JF, Coker EN. Study of a magnetically stabilized porous structure for thermochemical water splitting via TGA, high-temperature-XRD, and SEM analyses. Ind Eng Chem Res 2013, 52:3683-3692.
    • (2013) Ind Eng Chem Res , vol.52 , pp. 3683-3692
    • Allen, K.M.1    Mehdizadeh, A.M.2    Klausner, J.F.3    Coker, E.N.4
  • 63
    • 33645693170 scopus 로고    scopus 로고
    • A two-step thermochemical water splitting by iron-oxide on stabilized zirconia
    • Kodama T, Nakamuro Y, Mizuno T. A two-step thermochemical water splitting by iron-oxide on stabilized zirconia. J Solar Energy Eng 2004, 128:3-7.
    • (2004) J Solar Energy Eng , vol.128 , pp. 3-7
    • Kodama, T.1    Nakamuro, Y.2    Mizuno, T.3
  • 66
    • 57849086582 scopus 로고    scopus 로고
    • Two-step water splitting using mixed-metal ferrites: thermodynamic analysis and characterization of synthesized materials
    • Allendorf MD, Diver RB, Siegel NP, Miller JE. Two-step water splitting using mixed-metal ferrites: thermodynamic analysis and characterization of synthesized materials. Energy Fuel 2008, 22:4115-4124.
    • (2008) Energy Fuel , vol.22 , pp. 4115-4124
    • Allendorf, M.D.1    Diver, R.B.2    Siegel, N.P.3    Miller, J.E.4
  • 69
    • 0029287655 scopus 로고
    • Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle
    • Tamaura Y, Steinfeld A, Kuhn P, Ehrensberger K. Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle. Energy 1995, 20:325-330.
    • (1995) Energy , vol.20 , pp. 325-330
    • Tamaura, Y.1    Steinfeld, A.2    Kuhn, P.3    Ehrensberger, K.4
  • 70
    • 33748229076 scopus 로고    scopus 로고
    • Hydrogen production through two-step water splitting using YSZ (Ni, Fe) system for solar hydrogen production
    • ASME 2005 International Solar Energy Conference: Orlando, FL
    • Ishihara H, Kaneko H, Yokoyama T, Fuse A, Hasegawa N, Tamaura Y. Hydrogen production through two-step water splitting using YSZ (Ni, Fe) system for solar hydrogen production. In: ASME 2005 International Solar Energy Conference: Orlando, FL, 2005.
    • (2005)
    • Ishihara, H.1    Kaneko, H.2    Yokoyama, T.3    Fuse, A.4    Hasegawa, N.5    Tamaura, Y.6
  • 71
    • 54549083475 scopus 로고    scopus 로고
    • Two-step water splitting process with solid solution of YSZ and Ni-ferrite for solar hydrogen production (ISEC 2005-76151)
    • Ishihara H, Kaneko H, Hasegawa N, Tamaura Y. Two-step water splitting process with solid solution of YSZ and Ni-ferrite for solar hydrogen production (ISEC 2005-76151). J Solar Energy Eng 2008, 130:044501.
    • (2008) J Solar Energy Eng , vol.130
    • Ishihara, H.1    Kaneko, H.2    Hasegawa, N.3    Tamaura, Y.4
  • 72
    • 77950296050 scopus 로고    scopus 로고
    • A spinel ferrite/hercynite water-splitting redox cycle
    • Scheffe JR, Li JH, Weimer AW. A spinel ferrite/hercynite water-splitting redox cycle. Int J Hydrogen Energy 2010, 35:3333-3340.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 3333-3340
    • Scheffe, J.R.1    Li, J.H.2    Weimer, A.W.3
  • 75
    • 33751332963 scopus 로고    scopus 로고
    • Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides
    • Abanades S, Flamant G. Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Solar Energy 2006, 80:1611-1623.
    • (2006) Solar Energy , vol.80 , pp. 1611-1623
    • Abanades, S.1    Flamant, G.2
  • 80
    • 83055181383 scopus 로고    scopus 로고
    • 2-based ceramics for solar hydrogen production via a two-step water-splitting cycle with concentrated solar energy
    • 2-based ceramics for solar hydrogen production via a two-step water-splitting cycle with concentrated solar energy. Int J Hydrogen Energy 2011, 36:13435-13441.
    • (2011) Int J Hydrogen Energy , vol.36 , pp. 13435-13441
    • Meng, Q.-L.1    Lee, C.-i.2    Ishihara, T.3    Kaneko, H.4    Tamaura, Y.5
  • 85
    • 84886045151 scopus 로고    scopus 로고
    • Reactivity of doped ceria-based mixed oxides for solar thermochemical hydrogen generation via two-step water-splitting cycles
    • Le Gal A, Abanades S, Bion N, Le Mercier T, Harlé V. Reactivity of doped ceria-based mixed oxides for solar thermochemical hydrogen generation via two-step water-splitting cycles. Energy Fuel 2013, 27:6068-6078.
    • (2013) Energy Fuel , vol.27 , pp. 6068-6078
    • Le Gal, A.1    Abanades, S.2    Bion, N.3    Le Mercier, T.4    Harlé, V.5
  • 86
    • 84863084933 scopus 로고    scopus 로고
    • Dopant incorporation in ceria for enhanced water-splitting activity during solar thermochemical hydrogen generation
    • Le Gal A, Abanades S. Dopant incorporation in ceria for enhanced water-splitting activity during solar thermochemical hydrogen generation. J Phys Chem C 2012, 116:13516-13523.
    • (2012) J Phys Chem C , vol.116 , pp. 13516-13523
    • Le Gal, A.1    Abanades, S.2
  • 87
    • 80054939086 scopus 로고    scopus 로고
    • 2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions
    • 2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions. Energy Fuel 2011, 25:4836-4845.
    • (2011) Energy Fuel , vol.25 , pp. 4836-4845
    • Le Gal, A.1    Abanades, S.2    Flamant, G.3
  • 88
    • 85083944370 scopus 로고    scopus 로고
    • 2 within the context of hydrogen production from water
    • 2 within the context of hydrogen production from water. Top Catal 2014, 58:1-6.
    • (2014) Top Catal , vol.58 , pp. 1-6
    • Scaranto, J.1    Idriss, H.2
  • 90
  • 94
    • 68349137823 scopus 로고    scopus 로고
    • 3 (M=Mn, Fe) perovskites as materials for thermochemical hydrogen production in conventional and membrane reactors
    • 3 (M=Mn, Fe) perovskites as materials for thermochemical hydrogen production in conventional and membrane reactors. Int J Hydrogen Energy 2009, 34:7162-7172.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 7162-7172
    • Nalbandian, L.1    Evdou, A.2    Zaspalis, V.3
  • 95
    • 77949915637 scopus 로고    scopus 로고
    • 3-δ perovskites as redox materials for application in a membrane reactor for simultaneous production of pure hydrogen and synthesis gas
    • 3-δ perovskites as redox materials for application in a membrane reactor for simultaneous production of pure hydrogen and synthesis gas. Fuel 2010, 89:1265-1273.
    • (2010) Fuel , vol.89 , pp. 1265-1273
    • Evdou, A.1    Zaspalis, V.2    Nalbandian, L.3
  • 99
    • 84903132982 scopus 로고    scopus 로고
    • Investigation of perovskite structures as oxygen-exchange redox materials for hydrogen production from thermochemical two-step water-splitting cycles
    • Demont A, Abanades S, Beche E. Investigation of perovskite structures as oxygen-exchange redox materials for hydrogen production from thermochemical two-step water-splitting cycles. J Phys Chem C 2014, 118:12682-12692.
    • (2014) J Phys Chem C , vol.118 , pp. 12682-12692
    • Demont, A.1    Abanades, S.2    Beche, E.3
  • 100
    • 84905160265 scopus 로고    scopus 로고
    • Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting
    • Yang C-K, Yamazaki Y, Aydin A, Haile SM. Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting. J Mater Chem A 2014, 2:13612-13623.
    • (2014) J Mater Chem A , vol.2 , pp. 13612-13623
    • Yang, C.-K.1    Yamazaki, Y.2    Aydin, A.3    Haile, S.M.4
  • 101
    • 84901371522 scopus 로고    scopus 로고
    • Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics
    • Deml AM, Stevanovic V, Muhich CL, Musgrave CB, O'Hayre R. Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics. Energy Environ Sci 2014, 7:1996-2004.
    • (2014) Energy Environ Sci , vol.7 , pp. 1996-2004
    • Deml, A.M.1    Stevanovic, V.2    Muhich, C.L.3    Musgrave, C.B.4    O'Hayre, R.5
  • 103
    • 84898415980 scopus 로고    scopus 로고
    • Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting
    • Ermanoski I, Miller JE, Allendorf MD. Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting. Phys Chem Chem Phys 2014, 16:8418-8427.
    • (2014) Phys Chem Chem Phys , vol.16 , pp. 8418-8427
    • Ermanoski, I.1    Miller, J.E.2    Allendorf, M.D.3
  • 104
    • 84895929507 scopus 로고    scopus 로고
    • T-S diagram efficiency analysis of two-step thermochemical cycles for solar water splitting under various process conditions
    • Lange M, Roeb M, Sattler C, Pitz-Paal R. T-S diagram efficiency analysis of two-step thermochemical cycles for solar water splitting under various process conditions. Energy 2014, 67:298-308.
    • (2014) Energy , vol.67 , pp. 298-308
    • Lange, M.1    Roeb, M.2    Sattler, C.3    Pitz-Paal, R.4
  • 105
    • 84905907268 scopus 로고    scopus 로고
    • Cascading pressure thermal reduction for efficient solar fuel production
    • Ermanoski I. Cascading pressure thermal reduction for efficient solar fuel production. Int J Hydrogen Energy 2014, 39:13114-13117.
    • (2014) Int J Hydrogen Energy , vol.39 , pp. 13114-13117
    • Ermanoski, I.1
  • 106
    • 84874092464 scopus 로고    scopus 로고
    • A new reactor concept for efficient solar-thermochemical fuel production
    • Ermanoski I, Siegel NP, Stechel EB. A new reactor concept for efficient solar-thermochemical fuel production. J Solar Energy Eng 2013, 135:031002.
    • (2013) J Solar Energy Eng , vol.135
    • Ermanoski, I.1    Siegel, N.P.2    Stechel, E.B.3
  • 107
    • 0034290991 scopus 로고    scopus 로고
    • Ion transport membrane technology for oxygen separation and syngas production
    • Dyer PN, Richards RE, Russek SL, Taylor DM. Ion transport membrane technology for oxygen separation and syngas production. Solid State Ion 2000, 134:21-33.
    • (2000) Solid State Ion , vol.134 , pp. 21-33
    • Dyer, P.N.1    Richards, R.E.2    Russek, S.L.3    Taylor, D.M.4
  • 108
    • 84907406001 scopus 로고    scopus 로고
    • Heat recovery concept for thermochemical processes using a solid heat transfer medium
    • Felinks J, Brendelberger S, Roeb M, Sattler C, Pitz-Paal R. Heat recovery concept for thermochemical processes using a solid heat transfer medium. Appl Therm Eng 2014, 73:1004-1011.
    • (2014) Appl Therm Eng , vol.73 , pp. 1004-1011
    • Felinks, J.1    Brendelberger, S.2    Roeb, M.3    Sattler, C.4    Pitz-Paal, R.5
  • 109
    • 84878888580 scopus 로고    scopus 로고
    • Heat transfer analysis of a solid-solid heat recuperation system for solar-driven nonstoichiometric redox cycles
    • Lapp J, Davidson JH, Lipiński W. Heat transfer analysis of a solid-solid heat recuperation system for solar-driven nonstoichiometric redox cycles. J Solar Energy Eng 2013, 135:031004.
    • (2013) J Solar Energy Eng , vol.135
    • Lapp, J.1    Davidson, J.H.2    Lipiński, W.3
  • 110
    • 84923291016 scopus 로고    scopus 로고
    • 2 and CO production via the thermochemical cerium oxide redox cycle: the option of inert-swept reduction
    • 2 and CO production via the thermochemical cerium oxide redox cycle: the option of inert-swept reduction. Energy Fuel 2015, 29:1045-1054.
    • (2015) Energy Fuel , vol.29 , pp. 1045-1054
    • Krenzke, P.T.1    Davidson, J.H.2
  • 111
  • 112
    • 33747331130 scopus 로고    scopus 로고
    • Thermodynamic modelling of the cerium-oxygen system
    • Zinkevich M, Djurovic D, Aldinger F. Thermodynamic modelling of the cerium-oxygen system. Solid State Ion 2006, 177:989-1001.
    • (2006) Solid State Ion , vol.177 , pp. 989-1001
    • Zinkevich, M.1    Djurovic, D.2    Aldinger, F.3
  • 116
    • 65649119761 scopus 로고    scopus 로고
    • Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO-experimental validation at 10kW and scale-up to 1MW
    • Schunk LO, Lipiński W, Steinfeld A. Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO-experimental validation at 10kW and scale-up to 1MW. Chem Eng J 2009, 150:502-508.
    • (2009) Chem Eng J , vol.150 , pp. 502-508
    • Schunk, L.O.1    Lipiński, W.2    Steinfeld, A.3
  • 117
    • 84902253021 scopus 로고    scopus 로고
    • Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage
    • Ehrhart B, Gill D. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage. Energy Procedia 2014, 49:752-761.
    • (2014) Energy Procedia , vol.49 , pp. 752-761
    • Ehrhart, B.1    Gill, D.2
  • 118
    • 84901029143 scopus 로고    scopus 로고
    • Transient simulation of a tubular packed bed solar receiver for hydrogen generation via metal oxide thermochemical cycles
    • Martinek J, Viger R, Weimer AW. Transient simulation of a tubular packed bed solar receiver for hydrogen generation via metal oxide thermochemical cycles. Solar Energy 2014, 105:613-631.
    • (2014) Solar Energy , vol.105 , pp. 613-631
    • Martinek, J.1    Viger, R.2    Weimer, A.W.3
  • 119
    • 84883375306 scopus 로고    scopus 로고
    • Analysis and improvement of a high-efficiency solar cavity reactor design for a two-step thermochemical cycle for solar hydrogen production from water
    • Houaijia A, Sattler C, Roeb M, Lange M, Breuer S, Säck JP. Analysis and improvement of a high-efficiency solar cavity reactor design for a two-step thermochemical cycle for solar hydrogen production from water. Solar Energy 2013, 97:26-38.
    • (2013) Solar Energy , vol.97 , pp. 26-38
    • Houaijia, A.1    Sattler, C.2    Roeb, M.3    Lange, M.4    Breuer, S.5    Säck, J.P.6
  • 122
    • 78650358283 scopus 로고    scopus 로고
    • 2 powders in a moving-front solar thermochemical reactor
    • 2 powders in a moving-front solar thermochemical reactor. AICHE J 2011, 57:2264-2273.
    • (2011) AICHE J , vol.57 , pp. 2264-2273
    • Chambon, M.1    Abanades, S.2    Flamant, G.3
  • 124
    • 77952063788 scopus 로고    scopus 로고
    • Rapid high temperature solar thermal biomass gasification in a prototype cavity reactor
    • Lichty P, Perkins C, Woodruff B, Bingham C, Weimer A. Rapid high temperature solar thermal biomass gasification in a prototype cavity reactor. J Solar Energy Eng 2010, 132:011012.
    • (2010) J Solar Energy Eng , vol.132
    • Lichty, P.1    Perkins, C.2    Woodruff, B.3    Bingham, C.4    Weimer, A.5
  • 125
    • 84873309876 scopus 로고    scopus 로고
    • Design considerations for a multiple tube solar reactor
    • Martinek J, Weimer AW. Design considerations for a multiple tube solar reactor. Solar Energy 2013, 90:68-83.
    • (2013) Solar Energy , vol.90 , pp. 68-83
    • Martinek, J.1    Weimer, A.W.2
  • 126
    • 50949118358 scopus 로고    scopus 로고
    • A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energy
    • Melchior T, Perkins C, Weimer AW, Steinfeld A. A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energy. Int J Therm Sci 2008, 47:1496-1503.
    • (2008) Int J Therm Sci , vol.47 , pp. 1496-1503
    • Melchior, T.1    Perkins, C.2    Weimer, A.W.3    Steinfeld, A.4
  • 128
    • 84871756196 scopus 로고    scopus 로고
    • Evaluation of finite volume solutions for radiative heat transfer in a closed cavity solar receiver for high temperature solar thermal processes
    • Martinek J, Weimer AW. Evaluation of finite volume solutions for radiative heat transfer in a closed cavity solar receiver for high temperature solar thermal processes. Int J Heat Mass Transf 2013, 58:585-596.
    • (2013) Int J Heat Mass Transf , vol.58 , pp. 585-596
    • Martinek, J.1    Weimer, A.W.2
  • 129
    • 33646151156 scopus 로고    scopus 로고
    • Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s)
    • Müller R, Haeberling P, Palumbo RD. Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s). Solar Energy 2006, 80:500-511.
    • (2006) Solar Energy , vol.80 , pp. 500-511
    • Müller, R.1    Haeberling, P.2    Palumbo, R.D.3
  • 130
    • 84867866841 scopus 로고    scopus 로고
    • A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: design, modeling, and experimentation
    • Koepf E, Advani SG, Steinfeld A, Prasad AK. A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: design, modeling, and experimentation. Int J Hydrogen Energy 2012, 37:16871-16887.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 16871-16887
    • Koepf, E.1    Advani, S.G.2    Steinfeld, A.3    Prasad, A.K.4
  • 132
    • 77953795106 scopus 로고    scopus 로고
    • New solar water-splitting reactor with ferrite particles in an internally circulating fluidized bed
    • Gokon N, Takahashi S, Yamamoto H, Kodama T. New solar water-splitting reactor with ferrite particles in an internally circulating fluidized bed. J Solar Energy Eng 2009, 131:011007.
    • (2009) J Solar Energy Eng , vol.131
    • Gokon, N.1    Takahashi, S.2    Yamamoto, H.3    Kodama, T.4
  • 134
    • 34948845089 scopus 로고    scopus 로고
    • Design and simulation of a solar chemical reactor for the thermal reduction of metal oxides: case study of zinc oxide dissociation
    • Abanades S, Charvin P, Flamant G. Design and simulation of a solar chemical reactor for the thermal reduction of metal oxides: case study of zinc oxide dissociation. Chem Eng Sci 2007, 62:6323-6333.
    • (2007) Chem Eng Sci , vol.62 , pp. 6323-6333
    • Abanades, S.1    Charvin, P.2    Flamant, G.3
  • 135
    • 0035337440 scopus 로고    scopus 로고
    • The development of a solar chemical reactor for the direct thermal dissociation of zinc oxide
    • Möller S, Palumbo R. The development of a solar chemical reactor for the direct thermal dissociation of zinc oxide. J Solar Energy Eng 2000, 123:83-90.
    • (2000) J Solar Energy Eng , vol.123 , pp. 83-90
    • Möller, S.1    Palumbo, R.2
  • 136
    • 84888080307 scopus 로고    scopus 로고
    • Experimental investigation of vortex flow in a two-chamber solar thermochemical reactor
    • Koepf EE, Lindemer MD, Advani SG, Prasad AK. Experimental investigation of vortex flow in a two-chamber solar thermochemical reactor. J Fluids Eng 2013, 135:111103.
    • (2013) J Fluids Eng , vol.135 , pp. 111103
    • Koepf, E.E.1    Lindemer, M.D.2    Advani, S.G.3    Prasad, A.K.4
  • 137
    • 39149096890 scopus 로고    scopus 로고
    • Thermal ZnO dissociation in a rapid aerosol reactor as part of a solar hydrogen production cycle
    • Perkins C, Lichty PR, Weimer AW. Thermal ZnO dissociation in a rapid aerosol reactor as part of a solar hydrogen production cycle. Int J Hydrogen Energy 2008, 33:499-510.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 499-510
    • Perkins, C.1    Lichty, P.R.2    Weimer, A.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.