메뉴 건너뛰기




Volumn 78, Issue 4, 2018, Pages 266-277

Validation of histone deacetylase 3 as a therapeutic target in castration-resistant prostate cancer

Author keywords

androgen receptor; AR V7; epithelial to mesenchymal transition; HDAC; prostate cancer; resistance

Indexed keywords

ANDROGEN RECEPTOR; ANTINEOPLASTIC AGENT; HISTONE DEACETYLASE 1; HISTONE DEACETYLASE 2; HISTONE DEACETYLASE 3; HISTONE DEACETYLASE INHIBITOR; MOCETINOSTAT; RGFP 966; SMALL INTERFERING RNA; UNCLASSIFIED DRUG; VORINOSTAT; ACRYLAMIDE DERIVATIVE; AR PROTEIN, HUMAN; HISTONE DEACETYLASE; PHENYLENEDIAMINE DERIVATIVE; RGFP966;

EID: 85040819994     PISSN: 02704137     EISSN: 10970045     Source Type: Journal    
DOI: 10.1002/pros.23467     Document Type: Article
Times cited : (29)

References (55)
  • 2
    • 0030876442 scopus 로고    scopus 로고
    • Regulation of androgen-dependent prostatic cancer cell growth: androgen regulation of CDK2, CDK4, and CKI p16 genes
    • Lu S, Tsai SY, Tsai MJ. Regulation of androgen-dependent prostatic cancer cell growth: androgen regulation of CDK2, CDK4, and CKI p16 genes. Cancer Res 1997; 57:4511–4516.
    • (1997) Cancer Res , vol.57 , pp. 4511-4516
    • Lu, S.1    Tsai, S.Y.2    Tsai, M.J.3
  • 3
    • 0037058653 scopus 로고    scopus 로고
    • The role of androgens and the androgen receptor in prostate cancer
    • Debes JD, Tindall DJ. The role of androgens and the androgen receptor in prostate cancer. Cancer Lett 2002; 187:1–7.
    • (2002) Cancer Lett , vol.187 , pp. 1-7
    • Debes, J.D.1    Tindall, D.J.2
  • 4
    • 84901827161 scopus 로고    scopus 로고
    • Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis
    • Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene 2014; 33:2815–2825.
    • (2014) Oncogene , vol.33 , pp. 2815-2825
    • Yuan, X.1    Cai, C.2    Chen, S.3    Chen, S.4    Yu, Z.5    Balk, S.P.6
  • 6
    • 84941260680 scopus 로고    scopus 로고
    • Mechanisms of drug resistance that target the androgen axis in castration resistant prostate cancer (CRPC)
    • Penning TM. Mechanisms of drug resistance that target the androgen axis in castration resistant prostate cancer (CRPC). J Steroid Biochem 2015; 153:105–113.
    • (2015) J Steroid Biochem , vol.153 , pp. 105-113
    • Penning, T.M.1
  • 8
    • 84882781061 scopus 로고    scopus 로고
    • Metastatic castration-resistant prostate cancer: critical review of enzalutamide
    • El-Amm J, Patel N, Freeman A, Aragon-Ching JB. Metastatic castration-resistant prostate cancer: critical review of enzalutamide. Clin Med Insights Oncol 2013; 7:235.
    • (2013) Clin Med Insights Oncol , vol.7 , pp. 235
    • El-Amm, J.1    Patel, N.2    Freeman, A.3    Aragon-Ching, J.B.4
  • 9
    • 1842612441 scopus 로고    scopus 로고
    • Molecular determinants of resistance to antiandrogen therapy
    • Chen CD, Welsbie DS, Tran C, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10:33–39.
    • (2004) Nat Med , vol.10 , pp. 33-39
    • Chen, C.D.1    Welsbie, D.S.2    Tran, C.3
  • 10
    • 41649097549 scopus 로고    scopus 로고
    • Differential effects of prostate cancer therapeutics on neuroendocrine transdifferentiation
    • Frigo DE, McDonnell DP. Differential effects of prostate cancer therapeutics on neuroendocrine transdifferentiation. Mol Cancer Ther 2008; 7:659–669.
    • (2008) Mol Cancer Ther , vol.7 , pp. 659-669
    • Frigo, D.E.1    McDonnell, D.P.2
  • 11
    • 84871824758 scopus 로고    scopus 로고
    • Mechanism of growth inhibition of prostate cancer xenografts by valproic acid
    • Sidana A, Wang M, Shabbeer S, et al.Mechanism of growth inhibition of prostate cancer xenografts by valproic acid. J Biomed Biotechnol 2012; 2012:180363.
    • (2012) J Biomed Biotechnol , vol.2012 , pp. 180363
    • Sidana, A.1    Wang, M.2    Shabbeer, S.3
  • 12
    • 59149089556 scopus 로고    scopus 로고
    • Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer
    • Welsbie DS, Xu J, Chen Y, et al. Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Res 2009; 69:958–966.
    • (2009) Cancer Res , vol.69 , pp. 958-966
    • Welsbie, D.S.1    Xu, J.2    Chen, Y.3
  • 13
    • 80053130009 scopus 로고    scopus 로고
    • Histone deacetylase inhibitor valproic acid suppresses the growth and increases the androgen responsiveness of prostate cancer cells
    • Chou YW, Chaturvedi NK, Ouyang S, et al. Histone deacetylase inhibitor valproic acid suppresses the growth and increases the androgen responsiveness of prostate cancer cells. Cancer Lett 2011; 311:177–186.
    • (2011) Cancer Lett , vol.311 , pp. 177-186
    • Chou, Y.W.1    Chaturvedi, N.K.2    Ouyang, S.3
  • 14
    • 72249110437 scopus 로고    scopus 로고
    • Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862): trial results and interleukin-6 analysis: a study by the Department of Defense Prostate Cancer Clinical Trial Consortium and University of Chicago Phase 2 Consortium
    • Bradley D, Rathkopf D, Dunn R, et al. Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862): trial results and interleukin-6 analysis: a study by the Department of Defense Prostate Cancer Clinical Trial Consortium and University of Chicago Phase 2 Consortium. Cancer 2009; 115:5541–5549.
    • (2009) Cancer , vol.115 , pp. 5541-5549
    • Bradley, D.1    Rathkopf, D.2    Dunn, R.3
  • 15
    • 70549105748 scopus 로고    scopus 로고
    • Phase II, Two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC)
    • Molife LR, Attard G, Fong PC, et al. Phase II, Two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Ann Oncol 2010; 21:109–113.
    • (2010) Ann Oncol , vol.21 , pp. 109-113
    • Molife, L.R.1    Attard, G.2    Fong, P.C.3
  • 16
    • 84883487383 scopus 로고    scopus 로고
    • A phase 2 study of intravenous panobinostat in patients with castration-resistant prostate cancer
    • Rathkopf DE, Picus J, Hussain A, et al. A phase 2 study of intravenous panobinostat in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol 2013; 72:537–544.
    • (2013) Cancer Chemother Pharmacol , vol.72 , pp. 537-544
    • Rathkopf, D.E.1    Picus, J.2    Hussain, A.3
  • 17
    • 33847302895 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors enhance Ad5-TRAIL killing of TRAIL-resistant prostate tumor cells through increased caspase-2 activity
    • VanOosten RL, Earel JK, Griffith TS. Histone deacetylase inhibitors enhance Ad5-TRAIL killing of TRAIL-resistant prostate tumor cells through increased caspase-2 activity. Apoptosis 2007; 12:561–571.
    • (2007) Apoptosis , vol.12 , pp. 561-571
    • VanOosten, R.L.1    Earel, J.K.2    Griffith, T.S.3
  • 18
    • 84866419172 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells
    • Kong D, Ahmad A, Bao B, Li Y, Banerjee S, Sarkar FH. Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS ONE 2012; 7:e45045.
    • (2012) PLoS ONE , vol.7
    • Kong, D.1    Ahmad, A.2    Bao, B.3    Li, Y.4    Banerjee, S.5    Sarkar, F.H.6
  • 19
    • 84897541659 scopus 로고    scopus 로고
    • Contributions of epithelial-mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer
    • Li P, Yang R, Gao WQ. Contributions of epithelial-mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer. Mol Cancer 2014; 13:55.
    • (2014) Mol Cancer , vol.13 , pp. 55
    • Li, P.1    Yang, R.2    Gao, W.Q.3
  • 20
    • 34547872344 scopus 로고    scopus 로고
    • The zinc finger repressor, ZBP-89, recruits histone deacetylase 1 to repress vimentin gene expression
    • Wu Y, Zhang X, Salmon M, Zehner ZE. The zinc finger repressor, ZBP-89, recruits histone deacetylase 1 to repress vimentin gene expression. Genes Cells 2007; 12:905–918.
    • (2007) Genes Cells , vol.12 , pp. 905-918
    • Wu, Y.1    Zhang, X.2    Salmon, M.3    Zehner, Z.E.4
  • 21
    • 84927127599 scopus 로고    scopus 로고
    • HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells
    • Ji M, Lee EJ, Kim KB, et al. HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells. Oncol Rep 2015; 33:2299–2308.
    • (2015) Oncol Rep , vol.33 , pp. 2299-2308
    • Ji, M.1    Lee, E.J.2    Kim, K.B.3
  • 22
    • 0035710746 scopus 로고    scopus 로고
    • Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method
    • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001; 25:402–408.
    • (2001) Methods , vol.25 , pp. 402-408
    • Livak, K.J.1    Schmittgen, T.D.2
  • 23
    • 69449096661 scopus 로고    scopus 로고
    • Induction of Kruppel-like factor 5 expression by androgens results in increased CXCR4-dependent migration of prostate cancer cells in vitro
    • Frigo DE, Sherk AB, Wittmann BM, et al. Induction of Kruppel-like factor 5 expression by androgens results in increased CXCR4-dependent migration of prostate cancer cells in vitro. Mol Endocrinol 2009; 23:1385–1396.
    • (2009) Mol Endocrinol , vol.23 , pp. 1385-1396
    • Frigo, D.E.1    Sherk, A.B.2    Wittmann, B.M.3
  • 24
    • 84907057471 scopus 로고    scopus 로고
    • AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer
    • Antonarakis ES, Lu C, Wang H, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014; 371:1028–1038.
    • (2014) N Engl J Med , vol.371 , pp. 1028-1038
    • Antonarakis, E.S.1    Lu, C.2    Wang, H.3
  • 25
    • 85019242735 scopus 로고    scopus 로고
    • Clinical Significance of Androgen Receptor Splice Variant-7 mRNA Detection in Circulating Tumor Cells of Men With Metastatic Castration-Resistant Prostate Cancer Treated With First- and Second-Line Abiraterone and Enzalutamide
    • Antonarakis ES, Lu C, Luber B, et al. Clinical Significance of Androgen Receptor Splice Variant-7 mRNA Detection in Circulating Tumor Cells of Men With Metastatic Castration-Resistant Prostate Cancer Treated With First- and Second-Line Abiraterone and Enzalutamide. J Clin Oncol 2017; 35:2149–2156.
    • (2017) J Clin Oncol , vol.35 , pp. 2149-2156
    • Antonarakis, E.S.1    Lu, C.2    Luber, B.3
  • 27
    • 84869094406 scopus 로고    scopus 로고
    • AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression
    • Li Y, Hwang TH, Oseth LA, et al. AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression. Oncogene 2012; 31:4759–4767.
    • (2012) Oncogene , vol.31 , pp. 4759-4767
    • Li, Y.1    Hwang, T.H.2    Oseth, L.A.3
  • 28
    • 77249087051 scopus 로고    scopus 로고
    • Chemical phylogenetics of histone deacetylases
    • Bradner JE, West N, Grachan ML, et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol 2010; 6:238–243.
    • (2010) Nat Chem Biol , vol.6 , pp. 238-243
    • Bradner, J.E.1    West, N.2    Grachan, M.L.3
  • 29
    • 0034665124 scopus 로고    scopus 로고
    • Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo
    • Butler LM, Agus DB, Scher HI, et al. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 2000; 60:5165–5170.
    • (2000) Cancer Res , vol.60 , pp. 5165-5170
    • Butler, L.M.1    Agus, D.B.2    Scher, H.I.3
  • 30
    • 33846839622 scopus 로고    scopus 로고
    • Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation
    • Marrocco DL, Tilley WD, Bianco-Miotto T, et al. Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation. Mol Cancer Ther 2007; 6:51–60.
    • (2007) Mol Cancer Ther , vol.6 , pp. 51-60
    • Marrocco, D.L.1    Tilley, W.D.2    Bianco-Miotto, T.3
  • 31
    • 34848826864 scopus 로고    scopus 로고
    • Epithelial–mesenchymal and mesenchymal–
    • epithelial transitions in carcinoma progression.
    • Hugo H, Ackland ML, Blick T, et al. Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 2007; 213:374–383.
    • (2007) J Cell Physiol , vol.213 , pp. 374-383
    • Hugo, H.1    Ackland, M.L.2    Blick, T.3
  • 32
    • 65349132693 scopus 로고    scopus 로고
    • EMT, the cytoskeleton, and cancer cell invasion
    • Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 2009; 28:15–33.
    • (2009) Cancer Metastasis Rev , vol.28 , pp. 15-33
    • Yilmaz, M.1    Christofori, G.2
  • 33
    • 84890078624 scopus 로고    scopus 로고
    • Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade
    • Arora VK, Schenkein E, Murali R, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 2013; 155:1309–1322.
    • (2013) Cell , vol.155 , pp. 1309-1322
    • Arora, V.K.1    Schenkein, E.2    Murali, R.3
  • 34
    • 84898002226 scopus 로고    scopus 로고
    • Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer
    • Isikbay M, Otto K, Kregel S, et al. Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer. Horm Cancer 2014; 5:72–89.
    • (2014) Horm Cancer , vol.5 , pp. 72-89
    • Isikbay, M.1    Otto, K.2    Kregel, S.3
  • 35
    • 84957623685 scopus 로고    scopus 로고
    • Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer
    • Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 2016; 22:298–305.
    • (2016) Nat Med , vol.22 , pp. 298-305
    • Beltran, H.1    Prandi, D.2    Mosquera, J.M.3
  • 36
    • 85016776770 scopus 로고    scopus 로고
    • Emerging variants of castration-resistant prostate cancer
    • Vlachostergios PJ, Puca L, Beltran H. Emerging variants of castration-resistant prostate cancer. Curr Oncol Rep 2017; 19:32.
    • (2017) Curr Oncol Rep , vol.19 , pp. 32
    • Vlachostergios, P.J.1    Puca, L.2    Beltran, H.3
  • 37
    • 84869869682 scopus 로고    scopus 로고
    • HDAC inhibitor-based therapies: can we interpret the code
    • New M, Olzscha H, La Thangue NB. HDAC inhibitor-based therapies: can we interpret the code? Molecular oncology 2012; 6:637–656.
    • (2012) Molecular oncology , vol.6 , pp. 637-656
    • New, M.1    Olzscha, H.2    La Thangue, N.B.3
  • 38
    • 12444321545 scopus 로고    scopus 로고
    • Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously
    • Kelly WK, Richon VM, O'Connor O, et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 2003; 9:3578–3588.
    • (2003) Clin Cancer Res , vol.9 , pp. 3578-3588
    • Kelly, W.K.1    Richon, V.M.2    O'Connor, O.3
  • 39
    • 54749127362 scopus 로고    scopus 로고
    • Development of a small-molecule serum- and glucocorticoid-regulated kinase-1 antagonist and its evaluation as a prostate cancer therapeutic
    • Sherk AB, Frigo DE, Schnackenberg CG, et al. Development of a small-molecule serum- and glucocorticoid-regulated kinase-1 antagonist and its evaluation as a prostate cancer therapeutic. Cancer Res 2008; 68:7475–7483.
    • (2008) Cancer Res , vol.68 , pp. 7475-7483
    • Sherk, A.B.1    Frigo, D.E.2    Schnackenberg, C.G.3
  • 40
    • 24944535335 scopus 로고    scopus 로고
    • Regulation of LSD1 histone demethylase activity by its associated factors
    • Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y. Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 2005; 19:857–864.
    • (2005) Mol Cell , vol.19 , pp. 857-864
    • Shi, Y.J.1    Matson, C.2    Lan, F.3    Iwase, S.4    Baba, T.5    Shi, Y.6
  • 41
    • 78650722823 scopus 로고    scopus 로고
    • Physiological roles of class I HDAC complex and histone demethylase
    • Hayakawa T, Nakayama J. Physiological roles of class I HDAC complex and histone demethylase. J Biomed Biotechnol 2011; 2011:129383.
    • (2011) J Biomed Biotechnol , vol.2011 , pp. 129383
    • Hayakawa, T.1    Nakayama, J.2
  • 42
    • 33746435258 scopus 로고    scopus 로고
    • Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase
    • Yang M, Gocke CB, Luo X, et al. Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol Cell 2006; 23:377–387.
    • (2006) Mol Cell , vol.23 , pp. 377-387
    • Yang, M.1    Gocke, C.B.2    Luo, X.3
  • 43
    • 24144462170 scopus 로고    scopus 로고
    • LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription
    • Metzger E, Wissmann M, Yin N, et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005; 437:436–439.
    • (2005) Nature , vol.437 , pp. 436-439
    • Metzger, E.1    Wissmann, M.2    Yin, N.3
  • 44
    • 33847392500 scopus 로고    scopus 로고
    • Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression
    • Wissmann M, Yin N, Muller JM, et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 2007; 9:347–353.
    • (2007) Nat Cell Biol , vol.9 , pp. 347-353
    • Wissmann, M.1    Yin, N.2    Muller, J.M.3
  • 45
    • 84879085247 scopus 로고    scopus 로고
    • Androgen receptor-independent function of FoxA1 in prostate cancer metastasis
    • Jin HJ, Zhao JC, Ogden I, Bergan RC, Yu J. Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Res 2013; 73:3725–3736.
    • (2013) Cancer Res , vol.73 , pp. 3725-3736
    • Jin, H.J.1    Zhao, J.C.2    Ogden, I.3    Bergan, R.C.4    Yu, J.5
  • 46
    • 85015667988 scopus 로고    scopus 로고
    • FOXA1 inhibits prostate cancer neuroendocrine differentiation
    • Kim J, Jin H, Zhao JC, et al. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene 2017; 36:4072–4080.
    • (2017) Oncogene , vol.36 , pp. 4072-4080
    • Kim, J.1    Jin, H.2    Zhao, J.C.3
  • 47
    • 4644262388 scopus 로고    scopus 로고
    • Potentiation of androgen receptor transcriptional activity by inhibition of histone deacetylation—rescue of transcriptionally compromised mutants
    • Korkmaz CG, Fronsdal K, Zhang Y, Lorenzo PI, Saatcioglu F. Potentiation of androgen receptor transcriptional activity by inhibition of histone deacetylation—rescue of transcriptionally compromised mutants. J Endocrinol 2004; 182:377–389.
    • (2004) J Endocrinol , vol.182 , pp. 377-389
    • Korkmaz, C.G.1    Fronsdal, K.2    Zhang, Y.3    Lorenzo, P.I.4    Saatcioglu, F.5
  • 48
    • 0033230598 scopus 로고    scopus 로고
    • Inhibition of histone deacetylation augments dihydrotestosterone induction of androgen receptor levels: an explanation for trichostatin A effects on androgen-induced chromatin remodeling and transcription of the mouse mammary tumor virus promoter
    • List HJ, Smith CL, Rodriguez O, Danielsen M, Riegel AT. Inhibition of histone deacetylation augments dihydrotestosterone induction of androgen receptor levels: an explanation for trichostatin A effects on androgen-induced chromatin remodeling and transcription of the mouse mammary tumor virus promoter. Exp Cell Res 1999; 252:471–478.
    • (1999) Exp Cell Res , vol.252 , pp. 471-478
    • List, H.J.1    Smith, C.L.2    Rodriguez, O.3    Danielsen, M.4    Riegel, A.T.5
  • 49
    • 33645125545 scopus 로고    scopus 로고
    • Mechanisms of cell death induced by histone deacetylase inhibitors in androgen receptor-positive prostate cancer cells
    • Rokhlin OW, Glover RB, Guseva NV, Taghiyev AF, Kohlgraf KG, Cohen MB. Mechanisms of cell death induced by histone deacetylase inhibitors in androgen receptor-positive prostate cancer cells. Mol Cancer Res 2006; 4:113–123.
    • (2006) Mol Cancer Res , vol.4 , pp. 113-123
    • Rokhlin, O.W.1    Glover, R.B.2    Guseva, N.V.3    Taghiyev, A.F.4    Kohlgraf, K.G.5    Cohen, M.B.6
  • 50
    • 84862161257 scopus 로고    scopus 로고
    • A transcriptional repressor co-regulatory network governing androgen response in prostate cancers
    • Chng KR, Chang CW, Tan SK, et al. A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. EMBO J 2012; 31:2810–2823.
    • (2012) EMBO J , vol.31 , pp. 2810-2823
    • Chng, K.R.1    Chang, C.W.2    Tan, S.K.3
  • 51
    • 84871718539 scopus 로고    scopus 로고
    • Role of Rev-erbalpha domains for transactivation of the connexin43 promoter with Sp1
    • Negoro H, Okinami T, Kanematsu A, Imamura M, Tabata Y, Ogawa O. Role of Rev-erbalpha domains for transactivation of the connexin43 promoter with Sp1. FEBS Lett 2013; 587:98–103.
    • (2013) FEBS Lett , vol.587 , pp. 98-103
    • Negoro, H.1    Okinami, T.2    Kanematsu, A.3    Imamura, M.4    Tabata, Y.5    Ogawa, O.6
  • 52
    • 0034905085 scopus 로고    scopus 로고
    • Regulation of transcription factor YY1 by acetylation and deacetylation
    • Yao YL, Yang WM, Seto E. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol 2001; 21:5979–5991.
    • (2001) Mol Cell Biol , vol.21 , pp. 5979-5991
    • Yao, Y.L.1    Yang, W.M.2    Seto, E.3
  • 53
    • 70350566526 scopus 로고    scopus 로고
    • Yin Yang 1 regulates the transcriptional activity of androgen receptor
    • Deng Z, Wan M, Cao P, Rao A, Cramer SD, Sui G. Yin Yang 1 regulates the transcriptional activity of androgen receptor. Oncogene 2009; 28:3746–3757.
    • (2009) Oncogene , vol.28 , pp. 3746-3757
    • Deng, Z.1    Wan, M.2    Cao, P.3    Rao, A.4    Cramer, S.D.5    Sui, G.6
  • 55
    • 84988736441 scopus 로고    scopus 로고
    • Cell cycle-coupled expansion of AR activity promotes cancer progression
    • McNair C, Urbanucci A, Comstock CE, et al. Cell cycle-coupled expansion of AR activity promotes cancer progression. Oncogene 2017; 36:1655–1668.
    • (2017) Oncogene , vol.36 , pp. 1655-1668
    • McNair, C.1    Urbanucci, A.2    Comstock, C.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.