메뉴 건너뛰기




Volumn 145, Issue , 2018, Pages 197-209

PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval

Author keywords

Benchmark dataset; Content based image retrieval (CBIR); Convolutional neural networks; Deep learning; Handcrafted features; Remote sensing

Indexed keywords

BENCHMARKING; CLASSIFICATION (OF INFORMATION); CONTENT BASED RETRIEVAL; DEEP LEARNING; LAND USE; NEURAL NETWORKS;

EID: 85040575209     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2018.01.004     Document Type: Article
Times cited : (408)

References (49)
  • 1
    • 0032717091 scopus 로고    scopus 로고
    • An environment for content-based image retrieval from large spatial databases
    • Agouris, P., Carswell, J., Stefanidis, A., An environment for content-based image retrieval from large spatial databases. ISPRS J. Photogramm. Remote Sens. 54 (1999), 263–272.
    • (1999) ISPRS J. Photogramm. Remote Sens. , vol.54 , pp. 263-272
    • Agouris, P.1    Carswell, J.2    Stefanidis, A.3
  • 2
    • 85020312124 scopus 로고    scopus 로고
    • Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks
    • Alshehhi, R., Marpu, P.R., Woon, W.L., Dalla Mura, M., Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 130 (2017), 139–149.
    • (2017) ISPRS J. Photogramm. Remote Sens. , vol.130 , pp. 139-149
    • Alshehhi, R.1    Marpu, P.R.2    Woon, W.L.3    Dalla Mura, M.4
  • 3
    • 84896319674 scopus 로고    scopus 로고
    • Remote sensing image retrieval with global morphological texture descriptors
    • Aptoula, E., Remote sensing image retrieval with global morphological texture descriptors. IEEE Trans. Geosci. Remote Sens. 52 (2014), 3023–3034.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , pp. 3023-3034
    • Aptoula, E.1
  • 6
  • 8
    • 84971592097 scopus 로고    scopus 로고
    • A practical guide to CNNs and Fisher Vectors for image instance retrieval
    • Chandrasekhar, V., Lin, J., Morère, O., Goh, H., Veillard, A., A practical guide to CNNs and Fisher Vectors for image instance retrieval. Signal Process. 128 (2016), 426–439.
    • (2016) Signal Process. , vol.128 , pp. 426-439
    • Chandrasekhar, V.1    Lin, J.2    Morère, O.3    Goh, H.4    Veillard, A.5
  • 9
    • 85072028231 scopus 로고    scopus 로고
    • Return of the Devil in the Details: Delving Deep into Convolutional Nets, arXiv preprint arXiv:1405.3531.
    • Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A., 2014. Return of the Devil in the Details: Delving Deep into Convolutional Nets, arXiv preprint arXiv:1405.3531.
    • (2014)
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 10
    • 85017152027 scopus 로고    scopus 로고
    • Remote sensing image scene classification: benchmark and state of the art
    • Cheng, G., Han, J., Lu, X., Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE, 2017.
    • (2017) Proc. IEEE
    • Cheng, G.1    Han, J.2    Lu, X.3
  • 11
    • 84890425279 scopus 로고    scopus 로고
    • Unsupervised feature learning for aerial scene classification
    • Cheriyadat, A.M., Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 52 (2014), 439–451.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , pp. 439-451
    • Cheriyadat, A.M.1
  • 14
    • 84990038542 scopus 로고    scopus 로고
    • Deep image retrieval: learning global representations for image search
    • Springer
    • Gordo, A., Almazán, J., Revaud, J., Larlus, D., Deep image retrieval: learning global representations for image search. Eur. Conf. Comput. Vis., 2016, Springer, 241–257.
    • (2016) Eur. Conf. Comput. Vis. , pp. 241-257
    • Gordo, A.1    Almazán, J.2    Revaud, J.3    Larlus, D.4
  • 15
    • 85035113175 scopus 로고    scopus 로고
    • A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification
    • Han, W., Feng, R., Wang, L., Cheng, Y., A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification. ISPRS J. Photogramm. Remote Sens. 145 (2018), 23–43.
    • (2018) ISPRS J. Photogramm. Remote Sens. , vol.145 , pp. 23-43
    • Han, W.1    Feng, R.2    Wang, L.3    Cheng, Y.4
  • 20
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521:7553 (2015), 436–444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 21
    • 85019770658 scopus 로고    scopus 로고
    • Content-based high-resolution remote sensing image retrieval via unsupervised feature learning and collaborative affinity metric fusion
    • Li, Y., Zhang, Y., Tao, C., Zhu, H., Content-based high-resolution remote sensing image retrieval via unsupervised feature learning and collaborative affinity metric fusion. Remote Sens., 8, 2016, 709.
    • (2016) Remote Sens. , vol.8 , pp. 709
    • Li, Y.1    Zhang, Y.2    Tao, C.3    Zhu, H.4
  • 22
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G., Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60 (2004), 91–110.
    • (2004) Int. J. Comput. Vis. , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 23
    • 84988038682 scopus 로고    scopus 로고
    • Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning
    • Ma, X., Wang, H., Wang, J., Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning. ISPRS J. Photogramm. Remote Sens. 120 (2016), 99–107.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.120 , pp. 99-107
    • Ma, X.1    Wang, H.2    Wang, J.3
  • 24
    • 85054327455 scopus 로고    scopus 로고
    • Visual descriptors for content-based retrieval of remote sensing images, arXiv preprint arXiv:1602.00970., 2016
    • Napoletano, P., 2016. Visual descriptors for content-based retrieval of remote sensing images, arXiv preprint arXiv:1602.00970 (2016).
    • (2016)
    • Napoletano, P.1
  • 25
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Ojala, T., Pietikainen, M., Maenpaa, T., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002), 971–987.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 26
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: a holistic representation of the spatial envelope
    • Oliva, A., Torralba, A., Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42 (2001), 145–175.
    • (2001) Int. J. Comput. Vis. , vol.42 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 27
    • 84901839726 scopus 로고    scopus 로고
    • Performance analysis of state-of-the-art representation methods for geographical image retrieval and categorization
    • Özkan, S., Ateş T., Tola, E., Soysal, M., Esen, E., Performance analysis of state-of-the-art representation methods for geographical image retrieval and categorization. IEEE Geosci. Remote Sens. Lett. 11 (2014), 1996–2000.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , pp. 1996-2000
    • Özkan, S.1    Ateş, T.2    Tola, E.3    Soysal, M.4    Esen, E.5
  • 29
    • 78149348137 scopus 로고    scopus 로고
    • Improving the Fisher Kernel for large-scale image classification
    • Springer
    • Perronnin, F., Sánchez, J., Mensink, T., Improving the Fisher Kernel for large-scale image classification. Eur. Conf. Comput. Vis., 2010, Springer, 143–156.
    • (2010) Eur. Conf. Comput. Vis. , pp. 143-156
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 30
    • 79955623044 scopus 로고    scopus 로고
    • Entropy-balanced bitmap tree for shape-based object retrieval from large-scale satellite imagery databases
    • Scott, G.J., Klaric, M.N., Davis, C.H., Shyu, C.R., Entropy-balanced bitmap tree for shape-based object retrieval from large-scale satellite imagery databases. IEEE Trans. Geosci. Remote Sens. 49 (2011), 1603–1616.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 1603-1616
    • Scott, G.J.1    Klaric, M.N.2    Davis, C.H.3    Shyu, C.R.4
  • 31
    • 84905750182 scopus 로고    scopus 로고
    • Improved color texture descriptors for remote sensing image retrieval
    • Shao, Z., Zhou, W., Zhang, L., Hou, J., Improved color texture descriptors for remote sensing image retrieval. J. Appl. Remote Sens., 8, 2014, 83584.
    • (2014) J. Appl. Remote Sens. , vol.8 , pp. 83584
    • Shao, Z.1    Zhou, W.2    Zhang, L.3    Hou, J.4
  • 32
    • 84930751559 scopus 로고    scopus 로고
    • An effective hyperspectral image retrieval method using integrated spectral and textural features
    • Shao, Z., Zhou, W., Cheng, Q., Diao, C., Zhang, L., An effective hyperspectral image retrieval method using integrated spectral and textural features. Sens. Rev. 35 (2015), 274–281.
    • (2015) Sens. Rev. , vol.35 , pp. 274-281
    • Shao, Z.1    Zhou, W.2    Cheng, Q.3    Diao, C.4    Zhang, L.5
  • 34
    • 84863271556 scopus 로고    scopus 로고
    • High-resolution satellite scene classification using a sparse coding based multiple feature combination
    • Sheng, G., Yang, W., Xu, T., Sun, H., High-resolution satellite scene classification using a sparse coding based multiple feature combination. Int. J. Remote Sens. 33 (2012), 2395–2412.
    • (2012) Int. J. Remote Sens. , vol.33 , pp. 2395-2412
    • Sheng, G.1    Yang, W.2    Xu, T.3    Sun, H.4
  • 35
    • 85054303668 scopus 로고    scopus 로고
    • Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv preprint arXiv:1409.1556.
    • Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv preprint arXiv:1409.1556.
    • (2014)
    • Simonyan, K.1    Zisserman, A.2
  • 36
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: a text retrieval approach to object matching in videos
    • Sivic, J., Zisserman, A., Video Google: a text retrieval approach to object matching in videos. Proc. Ninth IEEE Int. Conf. Comput. Vis., 2003, 1470–1477.
    • (2003) Proc. Ninth IEEE Int. Conf. Comput. Vis. , pp. 1470-1477
    • Sivic, J.1    Zisserman, A.2
  • 42
    • 84872918592 scopus 로고    scopus 로고
    • Geographic image retrieval using local invariant features
    • Yang, Y., Newsam, S., Geographic image retrieval using local invariant features. IEEE Trans. Geosci. Remote Sens. 51 (2013), 818–832.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , pp. 818-832
    • Yang, Y.1    Newsam, S.2
  • 43
    • 84925784649 scopus 로고    scopus 로고
    • An improved Bag-of-Words framework for remote sensing image retrieval in large-scale image databases
    • Yang, J., Liu, J., Dai, Q., An improved Bag-of-Words framework for remote sensing image retrieval in large-scale image databases. Int. J. Digit. Earth. 8 (2015), 273–292.
    • (2015) Int. J. Digit. Earth. , vol.8 , pp. 273-292
    • Yang, J.1    Liu, J.2    Dai, Q.3
  • 45
    • 85028705162 scopus 로고    scopus 로고
    • Contextually guided very-high-resolution imagery classification with semantic segments
    • Zhao, W., Du, S., Wang, Q., Emery, W.J., Contextually guided very-high-resolution imagery classification with semantic segments. ISPRS J. Photogramm. Remote Sens. 132 (2017), 48–60.
    • (2017) ISPRS J. Photogramm. Remote Sens. , vol.132 , pp. 48-60
    • Zhao, W.1    Du, S.2    Wang, Q.3    Emery, W.J.4
  • 46
    • 84940766118 scopus 로고    scopus 로고
    • High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder
    • Zhou, W., Shao, Z., Diao, C., Cheng, Q., High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder. Remote Sens. Lett. 6 (2015), 775–783.
    • (2015) Remote Sens. Lett. , vol.6 , pp. 775-783
    • Zhou, W.1    Shao, Z.2    Diao, C.3    Cheng, Q.4
  • 47
    • 85019848798 scopus 로고    scopus 로고
    • Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval
    • Zhou, W., Newsam, S., Li, C., Shao, Z., Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval. Remote Sens., 9, 2017, 489.
    • (2017) Remote Sens. , vol.9 , pp. 489
    • Zhou, W.1    Newsam, S.2    Li, C.3    Shao, Z.4
  • 48
    • 79955681389 scopus 로고    scopus 로고
    • Using no-parameter statistic features for texture image retrieval
    • Zhu, X., Shao, Z., Using no-parameter statistic features for texture image retrieval. Sens. Rev. 31 (2011), 144–153.
    • (2011) Sens. Rev. , vol.31 , pp. 144-153
    • Zhu, X.1    Shao, Z.2
  • 49
    • 84947127828 scopus 로고    scopus 로고
    • Deep learning based feature selection for remote sensing scene classification
    • Zou, Q., Ni, L., Zhang, T., Wang, Q., Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 12 (2015), 2321–2325.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , pp. 2321-2325
    • Zou, Q.1    Ni, L.2    Zhang, T.3    Wang, Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.