메뉴 건너뛰기




Volumn 8, Issue 6, 2017, Pages

Ancient regulatory role of lysine acetylation in central metabolism

Author keywords

Acetylphosphate; Central metabolism; Enolase; Protein acetylation; Proteomics

Indexed keywords

BACTERIAL PROTEIN; CITRIC ACID; GLUCOSE; LYSINE; PROTEOME;

EID: 85039922037     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.01894-17     Document Type: Article
Times cited : (96)

References (41)
  • 1
    • 0024003456 scopus 로고
    • A direct link between core histone acetylation and transcriptionally active chromatin
    • Hebbes TR, Thorne AW, Crane-Robinson C. 1988. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7:1395-1402.
    • (1988) EMBO J , vol.7 , pp. 1395-1402
    • Hebbes, T.R.1    Thorne, A.W.2    Crane-Robinson, C.3
  • 2
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834-840. https://doi.org/10.1126/science.1175371.
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1    Kumar, C.2    Gnad, F.3    Nielsen, M.L.4    Rehman, M.5    Walther, T.C.6    Olsen, J.V.7    Mann, M.8
  • 4
    • 0347457075 scopus 로고    scopus 로고
    • Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine
    • Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC. 2002. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390-2392. https://doi.org/10.1126/science.1077650.
    • (2002) Science , vol.298 , pp. 2390-2392
    • Starai, V.J.1    Celic, I.2    Cole, R.N.3    Boeke, J.D.4    Escalante-Semerena, J.C.5
  • 5
    • 84904052542 scopus 로고    scopus 로고
    • Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase
    • Xu Y, Li F, Lv L, Li T, Zhou X, Deng CX, Guan KL, Lei QY, Xiong Y. 2014. Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase. Cancer Res 74:3630-3642. https://doi.org/10.1158/0008-5472.CAN-13-3615.
    • (2014) Cancer Res , vol.74 , pp. 3630-3642
    • Xu, Y.1    Li, F.2    Lv, L.3    Li, T.4    Zhou, X.5    Deng, C.X.6    Guan, K.L.7    Lei, Q.Y.8    Xiong, Y.9
  • 6
    • 84919949612 scopus 로고    scopus 로고
    • Histoplasmosis in HIV-infected patients: A review of new developments and remaining gaps
    • Adenis AA, Aznar C, Couppié P. 2014. Histoplasmosis in HIV-infected patients: a review of new developments and remaining gaps. Curr Trop Med Rep 1:119-128. https://doi.org/10.1007/s40475-014-0017-8.
    • (2014) Curr Trop Med Rep , vol.1 , pp. 119-128
    • Adenis, A.A.1    Aznar, C.2    Couppié, P.3
  • 7
    • 84956592602 scopus 로고    scopus 로고
    • Protein lysine acetylation in bacteria: Current state of the art
    • Ouidir T, Kentache T, Hardouin J. 2016. Protein lysine acetylation in bacteria: current state of the art. Proteomics 16:301-309. https://doi.org/10.1002/pmic.201500258.
    • (2016) Proteomics , vol.16 , pp. 301-309
    • Ouidir, T.1    Kentache, T.2    Hardouin, J.3
  • 8
    • 77952007219 scopus 로고    scopus 로고
    • Structural studies of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv
    • Anand K, Mathur D, Anant A, Garg LC. 2010. Structural studies of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:490-497. https://doi.org/10.1107/S1744309110011656.
    • (2010) Acta Crystallogr Sect F Struct Biol Cryst Commun , vol.66 , pp. 490-497
    • Anand, K.1    Mathur, D.2    Anant, A.3    Garg, L.C.4
  • 9
    • 0033605891 scopus 로고    scopus 로고
    • The crystal structure of Escherichia coli class II fructose-1, 6-bisphosphate aldolase in complex with phosphoglycolohydroxamate reveals details of mechanism and specificity
    • Hall DR, Leonard GA, Reed CD, Watt CI, Berry A, Hunter WN. 1999. The crystal structure of Escherichia coli class II fructose-1, 6-bisphosphate aldolase in complex with phosphoglycolohydroxamate reveals details of mechanism and specificity. J Mol Biol 287:383-394. https://doi.org/10.1006/jmbi.1999.2609.
    • (1999) J Mol Biol , vol.287 , pp. 383-394
    • Hall, D.R.1    Leonard, G.A.2    Reed, C.D.3    Watt, C.I.4    Berry, A.5    Hunter, W.N.6
  • 10
    • 0028296717 scopus 로고
    • Triosephosphate isomerase requires a positively charged active site: The role of lysine-12
    • Lodi PJ, Chang LC, Knowles JR, Komives EA. 1994. Triosephosphate isomerase requires a positively charged active site: the role of lysine-12. Biochemistry 33:2809-2814. https://doi.org/10.1021/bi00176a009.
    • (1994) Biochemistry , vol.33 , pp. 2809-2814
    • Lodi, P.J.1    Chang, L.C.2    Knowles, J.R.3    Komives, E.A.4
  • 12
    • 0036304272 scopus 로고    scopus 로고
    • Mechanistic implications for Escherichia coli cofactor-dependent phosphoglycerate mutase based on the high-resolution crystal structure of a vanadate complex
    • Bond CS, White MF, Hunter WN. 2002. Mechanistic implications for Escherichia coli cofactor-dependent phosphoglycerate mutase based on the high-resolution crystal structure of a vanadate complex. J Mol Biol 316:1071-1081. https://doi.org/10.1006/jmbi.2002.5418.
    • (2002) J Mol Biol , vol.316 , pp. 1071-1081
    • Bond, C.S.1    White, M.F.2    Hunter, W.N.3
  • 13
    • 0025804778 scopus 로고
    • 2+-2-phosphoglycerate/phosphoenolpyruvate complex at 2.2-Å resolution
    • 2+-2-phosphoglycerate/phosphoenolpyruvate complex at 2.2-Å resolution. Biochemistry 30:2817-2822. https://doi.org/10.1021/bi00225a012.
    • (1991) Biochemistry , vol.30 , pp. 2817-2822
    • Lebioda, L.1    Stec, B.2
  • 14
    • 0032520197 scopus 로고    scopus 로고
    • The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate
    • Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL. 1998. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6:195-210. https://doi.org/10.1016/S0969-2126(98)00021-5.
    • (1998) Structure , vol.6 , pp. 195-210
    • Jurica, M.S.1    Mesecar, A.2    Heath, P.J.3    Shi, W.4    Nowak, T.5    Stoddard, B.L.6
  • 15
    • 0037452897 scopus 로고    scopus 로고
    • The 1.75 Å crystal structure of acetyl-CoA synthetase bound to adenosine-5-’propylphosphate and coenzyme A
    • Gulick AM, Starai VJ, Horswill AR, Homick KM, Escalante-Semerena JC. 2003. The 1.75 Å crystal structure of acetyl-CoA synthetase bound to adenosine-5-’propylphosphate and coenzyme A. Biochemistry 42: 2866-2873. https://doi.org/10.1021/bi0271603.
    • (2003) Biochemistry , vol.42 , pp. 2866-2873
    • Gulick, A.M.1    Starai, V.J.2    Horswill, A.R.3    Homick, K.M.4    Escalante-Semerena, J.C.5
  • 16
    • 31344437517 scopus 로고    scopus 로고
    • Structural and functional studies suggest a catalytic mechanism for the phosphotransacetylase from Methanosarcina thermophila
    • Lawrence SH, Luther KB, Schindelin H, Ferry JG. 2006. Structural and functional studies suggest a catalytic mechanism for the phosphotransacetylase from Methanosarcina thermophila. J Bacteriol 188:1143-1154. https://doi.org/10.1128/JB.188.3.1143-1154.2006.
    • (2006) J Bacteriol , vol.188 , pp. 1143-1154
    • Lawrence, S.H.1    Luther, K.B.2    Schindelin, H.3    Ferry, J.G.4
  • 17
    • 0025816177 scopus 로고
    • Refined crystal structure of lipoamide dehydrogenase from Azotobacter vinelandii at 2.2 Å resolution. A comparison with the structure of glutathione reductase
    • Mattevi A, Schierbeek AJ, Hol WG. 1991. Refined crystal structure of lipoamide dehydrogenase from Azotobacter vinelandii at 2.2 Å resolution. A comparison with the structure of glutathione reductase. J Mol Biol 220:975-994. https://doi.org/10.1016/0022-2836(91)90367-F.
    • (1991) J Mol Biol , vol.220 , pp. 975-994
    • Mattevi, A.1    Schierbeek, A.J.2    Hol, W.G.3
  • 18
    • 0035854744 scopus 로고    scopus 로고
    • Crystal structure of Bacillus subtilis isocitrate dehydrogenase at 1.55 Å. Insights into the nature of substrate specificity exhibited by Escherichia coli isocitrate dehydrogenase kinase/phosphatase
    • Singh SK, Matsuno K, LaPorte DC, Banaszak LJ. 2001. Crystal structure of Bacillus subtilis isocitrate dehydrogenase at 1.55 Å. Insights into the nature of substrate specificity exhibited by Escherichia coli isocitrate dehydrogenase kinase/phosphatase. J Biol Chem 276:26154-26163. https://doi.org/10.1074/jbc.M101191200.
    • (2001) J Biol Chem , vol.276 , pp. 26154-26163
    • Singh, S.K.1    Matsuno, K.2    Laporte, D.C.3    Banaszak, L.J.4
  • 19
    • 0034635193 scopus 로고    scopus 로고
    • ADP-binding site of Escherichia coli succinyl-CoA synthetase revealed by x-ray crystallography
    • Joyce MA, Fraser ME, James MN, Bridger WA, Wolodko WT. 2000. ADP-binding site of Escherichia coli succinyl-CoA synthetase revealed by x-ray crystallography. Biochemistry 39:17-25. https://doi.org/10.1021/bi991696f.
    • (2000) Biochemistry , vol.39 , pp. 17-25
    • Joyce, M.A.1    Fraser, M.E.2    James, M.N.3    Bridger, W.A.4    Wolodko, W.T.5
  • 22
    • 34547614468 scopus 로고    scopus 로고
    • The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators
    • Klein AH, Shulla A, Reimann SA, Keating DH, Wolfe AJ. 2007. The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J Bacteriol 189:5574-5581. https://doi.org/10.1128/JB.00564-07.
    • (2007) J Bacteriol , vol.189 , pp. 5574-5581
    • Klein, A.H.1    Shulla, A.2    Reimann, S.A.3    Keating, D.H.4    Wolfe, A.J.5
  • 23
    • 0028340662 scopus 로고
    • Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli
    • Prüss BM, Wolfe AJ. 1994. Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol Microbiol 12:973-984. https://doi.org/10.1111/j.1365-2958.1994.tb01085.x.
    • (1994) Mol Microbiol , vol.12 , pp. 973-984
    • Prüss, B.M.1    Wolfe, A.J.2
  • 26
    • 14944368136 scopus 로고    scopus 로고
    • The acetate switch
    • Wolfe AJ. 2005. The acetate switch. Microbiol Mol Biol Rev 69:12-50. https://doi.org/10.1128/MMBR.69.1.12-50.2005.
    • (2005) Microbiol Mol Biol Rev , vol.69 , pp. 12-50
    • Wolfe, A.J.1
  • 27
    • 35148861695 scopus 로고    scopus 로고
    • On the origin of biochemistry at an alkaline hydrothermal vent
    • Martin W, Russell MJ. 2007. On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Biol Sci 362:1887-1925. https://doi.org/10.1098/rstb.2006.1881.
    • (2007) Philos Trans R Soc Lond B Biol Sci , vol.362 , pp. 1887-1925
    • Martin, W.1    Russell, M.J.2
  • 31
    • 48949104656 scopus 로고    scopus 로고
    • MzML: A single, unifying data format for mass spectrometer output
    • Deutsch E. 2008. mzML: a single, unifying data format for mass spectrometer output. Proteomics 8:2776-2777. https://doi.org/10.1002/pmic.200890049.
    • (2008) Proteomics , vol.8 , pp. 2776-2777
    • Deutsch, E.1
  • 32
    • 54949129419 scopus 로고    scopus 로고
    • ProteoWizard: Open source software for rapid proteomics tools development
    • Kessner D, Chambers M, Burke R, Agus D, Mallick P. 2008. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534-2536. https://doi.org/10.1093/bioinformatics/btn323.
    • (2008) Bioinformatics , vol.24 , pp. 2534-2536
    • Kessner, D.1    Chambers, M.2    Burke, R.3    Agus, D.4    Mallick, P.5
  • 33
    • 84950239084 scopus 로고    scopus 로고
    • Correcting systematic bias and instrument measurement drift with mzRefinery
    • Gibbons BC, Chambers MC, Monroe ME, Tabb DL, Payne SH. 2015. Correcting systematic bias and instrument measurement drift with mzRefinery. Bioinformatics 31:3838-3840. https://doi.org/10.1093/bioinformatics/btv437.
    • (2015) Bioinformatics , vol.31 , pp. 3838-3840
    • Gibbons, B.C.1    Chambers, M.C.2    Monroe, M.E.3    Tabb, D.L.4    Payne, S.H.5
  • 34
    • 84959528568 scopus 로고    scopus 로고
    • BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences
    • Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726-731. https://doi.org/10.1016/j.jmb.2015.11.006.
    • (2016) J Mol Biol , vol.428 , pp. 726-731
    • Kanehisa, M.1    Sato, Y.2    Morishima, K.3
  • 35
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: Multiple sequence alignment with high accuracy and high throughput
    • Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792-1797. https://doi.org/10.1093/nar/gkh340.
    • (2004) Nucleic Acids Res , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 38
    • 84962897215 scopus 로고    scopus 로고
    • ETE 3: Reconstruction, analysis, and visualization of phylogenomic data
    • Huerta-Cepas J, Serra F, Bork P. 2016. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol 33:1635-1638. https://doi.org/10.1093/molbev/msw046.
    • (2016) Mol Biol Evol , vol.33 , pp. 1635-1638
    • Huerta-Cepas, J.1    Serra, F.2    Bork, P.3
  • 39
    • 0004180464 scopus 로고
    • Department of Biochemistry and Molecular Biology, University College, London, United Kingdom
    • Hubbard S, Thornton J. 1993. NACCESS version 2.1.1. Department of Biochemistry and Molecular Biology, University College, London, United Kingdom.
    • (1993) NACCESS Version 2.1.1
    • Hubbard, S.1    Thornton, J.2
  • 40
    • 0041989751 scopus 로고    scopus 로고
    • CASTp: Computed Atlas of Surface Topography of proteins
    • Binkowski TA, Naghibzadeh S, Liang J. 2003. CASTp: Computed Atlas of Surface Topography of proteins. Nucleic Acids Res 31:3352-3355. https://doi.org/10.1093/nar/gkg512.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3352-3355
    • Binkowski, T.A.1    Naghibzadeh, S.2    Liang, J.3
  • 41
    • 79959338646 scopus 로고    scopus 로고
    • Cellular stoichiometry of the chemotaxis proteins in Bacillus subtilis
    • Cannistraro VJ, Glekas GD, Rao CV, Ordal GW. 2011. Cellular stoichiometry of the chemotaxis proteins in Bacillus subtilis. J Bacteriol 193: 3220-3227. https://doi.org/10.1128/JB.01255-10.
    • (2011) J Bacteriol , vol.193 , pp. 3220-3227
    • Cannistraro, V.J.1    Glekas, G.D.2    Rao, C.V.3    Ordal, G.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.