메뉴 건너뛰기




Volumn 19, Issue , 2018, Pages

Identification of usual interstitial pneumonia pattern using RNA-Seq and machine learning: Challenges and solutions

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; ARTICLE; CLASSIFIER; CONTROLLED STUDY; DIAGNOSTIC TEST ACCURACY STUDY; FIBROSING ALVEOLITIS; GENE EXPRESSION PROFILING; GENE IDENTIFICATION; HUMAN; HUMAN TISSUE; INTERSTITIAL PNEUMONIA; LEARNING ALGORITHM; MAJOR CLINICAL STUDY; OVERLAPPING GENE; PREVALENCE; PROSPECTIVE STUDY; RECEIVER OPERATING CHARACTERISTIC; REPRODUCIBILITY; RNA SEQUENCE; SENSITIVITY AND SPECIFICITY; TRANSBRONCHIAL BIOPSY; AREA UNDER THE CURVE; BIOLOGY; BIOPSY; COMPUTER SIMULATION; DIFFERENTIAL DIAGNOSIS; GENETIC PREDISPOSITION; GENETICS; MACHINE LEARNING; PROCEDURES; SEQUENCE ANALYSIS; STATISTICAL MODEL;

EID: 85039797581     PISSN: None     EISSN: 14712164     Source Type: Journal    
DOI: 10.1186/s12864-018-4467-6     Document Type: Article
Times cited : (23)

References (25)
  • 2
    • 84881669432 scopus 로고    scopus 로고
    • An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias
    • Travis WD, Costabel U, Hansell DM, King TE Jr, Lynch DA, Nicholson AG, Ryerson CJ, Ryu JH, Selman M, Wells AU, et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188:733-48.
    • (2013) Am J Respir Crit Care Med , vol.188 , pp. 733-748
    • Travis, W.D.1    Costabel, U.2    Hansell, D.M.3    King, T.E.4    Lynch, D.A.5    Nicholson, A.G.6    Ryerson, C.J.7    Ryu, J.H.8    Selman, M.9    Wells, A.U.10
  • 5
    • 79251644774 scopus 로고    scopus 로고
    • Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer's disease
    • Twine NA, Janitz K, Wilkins MR, Janitz M. Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer's disease. PLoS One. 2011;6:e16266.
    • (2011) PLoS One , vol.6
    • Twine, N.A.1    Janitz, K.2    Wilkins, M.R.3    Janitz, M.4
  • 6
    • 85020941675 scopus 로고    scopus 로고
    • An expanded view of complex traits: from polygenic to omnigenic
    • Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177-86.
    • (2017) Cell , vol.169 , pp. 1177-1186
    • Boyle, E.A.1    Li, Y.I.2    Pritchard, J.K.3
  • 12
    • 84930871576 scopus 로고    scopus 로고
    • Classification of usual interstitial pneumonia in patients with interstitial lung disease: assessment of a machine learning approach using high-dimensional transcriptional data
    • Kim SY, Diggans J, Pankratz D, Huang J, Pagan M, Sindy N, Tom E, Anderson J, Choi Y, Lynch DA, et al. Classification of usual interstitial pneumonia in patients with interstitial lung disease: assessment of a machine learning approach using high-dimensional transcriptional data. Lancet Respir Med. 2015;3:473-82.
    • (2015) Lancet Respir Med , vol.3 , pp. 473-482
    • Kim, S.Y.1    Diggans, J.2    Pankratz, D.3    Huang, J.4    Pagan, M.5    Sindy, N.6    Tom, E.7    Anderson, J.8    Choi, Y.9    Lynch, D.A.10
  • 14
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq--a python framework to work with high-throughput sequencing data
    • Anders S, Pyl PT, Huber W. HTSeq--a python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166-9.
    • (2015) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 16
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    • (2014) Genome Biol , vol.15 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 20
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Rokach L. Ensemble-based classifiers. Artif Intell Rev. 2010;33:1-39. %@ 0269-2821.
    • (2010) Artif Intell Rev , vol.33 , pp. 1-39
    • Rokach, L.1
  • 21
    • 84899084283 scopus 로고    scopus 로고
    • Cross-validation pitfalls when selecting and assessing regression and classification models
    • Krstajic D, Buturovic LJ, Leahy DE, Thomas S. Cross-validation pitfalls when selecting and assessing regression and classification models. J Cheminform. 2014;6:10.
    • (2014) J Cheminform , vol.6 , pp. 10
    • Krstajic, D.1    Buturovic, L.J.2    Leahy, D.E.3    Thomas, S.4
  • 22
    • 84974711038 scopus 로고    scopus 로고
    • Modelling classification performance for large data sets
    • Gu B, Hu F, Liu H. Modelling classification performance for large data sets. Adv Web Age Inf Manag. 2001:317-28.
    • (2001) Adv Web Age Inf Manag. , pp. 317-328
    • Gu, B.1    Hu, F.2    Liu, H.3
  • 24
    • 84929510967 scopus 로고    scopus 로고
    • Machine learning applications in genetics and genomics
    • Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet. 2015;16:321-32.
    • (2015) Nat Rev Genet , vol.16 , pp. 321-332
    • Libbrecht, M.W.1    Noble, W.S.2
  • 25
    • 85055486194 scopus 로고    scopus 로고
    • Understanding data augmentation for classification: when to warp?
    • 150902896X
    • Wong SC, Gatt A, Stamatescu V, McDonnell MD. Understanding data augmentation for classification: when to warp? In: IEEE; 2016. p. 1-6. %@ 150902896X.
    • (2016) IEEE , pp. 1-6
    • Wong, S.C.1    Gatt, A.2    Stamatescu, V.3    McDonnell, M.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.