-
1
-
-
85027945147
-
Vehicle logo recognition system based on convolutional neural networks with a pretraining strategy
-
Aug.
-
Y. Huang, R. Wu, Y. Sun, W. Wang, and X. Ding, "Vehicle logo recognition system based on convolutional neural networks with a pretraining strategy," IEEE Trans. Intell. Transp. Syst., vol. 16, no. 4, pp. 1951-1960, Aug. 2015.
-
(2015)
IEEE Trans. Intell. Transp. Syst.
, vol.16
, Issue.4
, pp. 1951-1960
-
-
Huang, Y.1
Wu, R.2
Sun, Y.3
Wang, W.4
Ding, X.5
-
2
-
-
77953120605
-
Vehicle logo recognition using a SIFT-based enhanced matching scheme
-
Jun.
-
A. P. Psyllos, C.-N. E. Anagnostopoulos, and E. Kayafas, "Vehicle logo recognition using a SIFT-based enhanced matching scheme," IEEE Trans. Intell. Transp. Syst., vol. 11, no. 2, pp. 322-328, Jun. 2010.
-
(2010)
IEEE Trans. Intell. Transp. Syst.
, vol.11
, Issue.2
, pp. 322-328
-
-
Psyllos, A.P.1
Anagnostopoulos, C.-N.E.2
Kayafas, E.3
-
3
-
-
84888873104
-
An integrative approach to accurate vehicle logo detection
-
Sep.
-
H. Pan and B. Zhang, "An integrative approach to accurate vehicle logo detection," J. Elect. Comput. Eng., vol. 2013, Sep. 2013, Art. no. 391652.
-
(2013)
J. Elect. Comput. Eng.
, vol.2013
-
-
Pan, H.1
Zhang, B.2
-
4
-
-
84956601953
-
Exploiting effects of parts in fine-grained categorization of vehicles
-
Sep.
-
L. Liao, R. Hu, J. Xiao, Q. Wang, J. Xiao, and J. Chen, "Exploiting effects of parts in fine-grained categorization of vehicles," in Proc. Int. Conf. Image Process., Sep. 2015, pp. 745-749.
-
(2015)
Proc. Int. Conf. Image Process.
, pp. 745-749
-
-
Liao, L.1
Hu, R.2
Xiao, J.3
Wang, Q.4
Xiao, J.5
Chen, J.6
-
5
-
-
84959531264
-
Recognition of car makes and models from a single traffic-camera image
-
Dec.
-
H. He, Z. Shao, and J. Tan, "Recognition of car makes and models from a single traffic-camera image," IEEE Trans. Intell. Transp. Syst., vol. 16, no. 6, pp. 3182-3192, Dec. 2015.
-
(2015)
IEEE Trans. Intell. Transp. Syst.
, vol.16
, Issue.6
, pp. 3182-3192
-
-
He, H.1
Shao, Z.2
Tan, J.3
-
6
-
-
33745920531
-
Edge-based rich representation for vehicle classification
-
Oct.
-
X. Ma and W. E. L. Grimson, "Edge-based rich representation for vehicle classification," in Proc. Int. Conf. Comput. Vis., Oct. 2005, pp. 1185-1192.
-
(2005)
Proc. Int. Conf. Comput. Vis.
, pp. 1185-1192
-
-
Ma, X.1
Grimson, W.E.L.2
-
7
-
-
34047216475
-
Analysis of features for rigid structure vehicle type recognition
-
V. S. Petrovic and T. F. Cootes, "Analysis of features for rigid structure vehicle type recognition," in Proc. Brit. Mach. Vis. Conf., 2004, pp. 587-596.
-
(2004)
Proc. Brit. Mach. Vis. Conf.
, pp. 587-596
-
-
Petrovic, V.S.1
Cootes, T.F.2
-
8
-
-
80052655733
-
Vehicle recognition using curvelet transform and thresholding
-
T. Sobh, Ed. Dordrecht, The Netherlands: Springer
-
F. Kazemi, H. Pourreza, R. Moravejian, and E. Kazemi, "Vehicle recognition using curvelet transform and thresholding," in Advances in Computer and Information Sciences and Engineering, T. Sobh, Ed. Dordrecht, The Netherlands: Springer, 2008, pp. 142-146.
-
(2008)
Advances in Computer and Information Sciences and Engineering
, pp. 142-146
-
-
Kazemi, F.1
Pourreza, H.2
Moravejian, R.3
Kazemi, E.4
-
9
-
-
72949120132
-
Vehicle type recognition based on harris corner detector
-
J. Li, W. Zhao, and H. Guo, "Vehicle type recognition based on harris corner detector," in Proc. 2nd Int. Conf. Transp. Eng., 2009, pp. 3320-3325.
-
(2009)
Proc. 2nd Int. Conf. Transp. Eng.
, pp. 3320-3325
-
-
Li, J.1
Zhao, W.2
Guo, H.3
-
10
-
-
84879296134
-
Reliable classification of vehicle types based on cascade classifier ensembles
-
Mar.
-
B. Zhang, "Reliable classification of vehicle types based on cascade classifier ensembles," IEEE Trans. Intell. Transp. Syst., vol. 14, no. 1, pp. 322-332, Mar. 2013.
-
(2013)
IEEE Trans. Intell. Transp. Syst.
, vol.14
, Issue.1
, pp. 322-332
-
-
Zhang, B.1
-
11
-
-
84865712685
-
Vehicle type and make recognition by combined features and rotation forest ensemble
-
B. Zhang and Y. Zhou, "Vehicle type and make recognition by combined features and rotation forest ensemble," Int. J. Pattern Recognit. Artif. Intell., vol. 26, no. 3, p. 1250004, 2012.
-
(2012)
Int. J. Pattern Recognit. Artif. Intell.
, vol.26
, Issue.3
, pp. 1250004
-
-
Zhang, B.1
Zhou, Y.2
-
12
-
-
34047213276
-
An oriented-contour point based voting algorithm for vehicle type classification
-
Aug.
-
P. Negri, X. Clady, M. Milgram, and R. Poulenard, "An oriented-contour point based voting algorithm for vehicle type classification," in Proc. Int. Conf. Pattern Recognit., Aug. 2006, pp. 574-577.
-
(2006)
Proc. Int. Conf. Pattern Recognit.
, pp. 574-577
-
-
Negri, P.1
Clady, X.2
Milgram, M.3
Poulenard, R.4
-
13
-
-
84923844219
-
Vehicle detection and recognition for intelligent traffic surveillance system
-
Y. Tang, C. Zhang, R. Gu, P. Li, and B. Yang, "Vehicle detection and recognition for intelligent traffic surveillance system," Multimedia Tools Appl., vol. 76, no. 4, pp. 5817-5832, 2017.
-
(2017)
Multimedia Tools Appl.
, vol.76
, Issue.4
, pp. 5817-5832
-
-
Tang, Y.1
Zhang, C.2
Gu, R.3
Li, P.4
Yang, B.5
-
14
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov.
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
15
-
-
85028222906
-
Vehicle type classification using a semisupervised convolutional neural network
-
Aug.
-
Z. Dong, Y. Wu, M. Pei, and Y. Jia, "Vehicle type classification using a semisupervised convolutional neural network," IEEE Trans. Intell. Transp. Syst., vol. 16, no. 4, pp. 2247-2256, Aug. 2015.
-
(2015)
IEEE Trans. Intell. Transp. Syst.
, vol.16
, Issue.4
, pp. 2247-2256
-
-
Dong, Z.1
Wu, Y.2
Pei, M.3
Jia, Y.4
-
16
-
-
84959184327
-
A large-scale car dataset for fine-grained categorization and verification
-
Jun.
-
L. Yang, P. Luo, C. C. Loy, and X. Tang, "A large-scale car dataset for fine-grained categorization and verification," in Proc. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 3973-3981.
-
(2015)
Proc. Comput. Vis. Pattern Recognit.
, pp. 3973-3981
-
-
Yang, L.1
Luo, P.2
Loy, C.C.3
Tang, X.4
-
17
-
-
85028395788
-
Fine-grained vehicle model recognition using a coarse-to-fine convolutional neural network architecture
-
Jul.
-
J. Fang, Y. Zhou, Y. Yu, and S. Du, "Fine-grained vehicle model recognition using a coarse-to-fine convolutional neural network architecture," IEEE Trans. Intell. Transp. Syst., vol. 18, no. 7, pp. 1782-1792, Jul. 2017.
-
(2017)
IEEE Trans. Intell. Transp. Syst.
, vol.18
, Issue.7
, pp. 1782-1792
-
-
Fang, J.1
Zhou, Y.2
Yu, Y.3
Du, S.4
-
18
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Neural Inf. Process. Syst. (NIPS), 2012, pp. 1097-1105.
-
(2012)
Proc. Neural Inf. Process. Syst. (NIPS)
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
19
-
-
84986266809
-
BoxCars: 3D boxes as CNN input for improved fine-grained vehicle recognition
-
Jun.
-
J. Sochor, A. Herout, and J. Havel, "BoxCars: 3D boxes as CNN input for improved fine-grained vehicle recognition," in Proc. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 3006-3015.
-
(2016)
Proc. Comput. Vis. Pattern Recognit.
, pp. 3006-3015
-
-
Sochor, J.1
Herout, A.2
Havel, J.3
-
20
-
-
85012926200
-
A model for fine-grained vehicle classification based on deep learning
-
Sep.
-
S. Yu, Y. Wu, W. Li, Z. Song, and W. Zeng, "A model for fine-grained vehicle classification based on deep learning," Neurocomputing, vol. 257, pp. 97-103, Sep. 2017.
-
(2017)
Neurocomputing
, vol.257
, pp. 97-103
-
-
Yu, S.1
Wu, Y.2
Li, W.3
Song, Z.4
Zeng, W.5
-
21
-
-
77956031473
-
A survey on transfer learning
-
Oct.
-
S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
22
-
-
84859477054
-
A kernel two-sample test
-
Mar.
-
A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, "A kernel two-sample test," J. Mach. Learn. Res., vol. 13, pp. 723-773, Mar. 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.5
-
23
-
-
84919819401
-
Maximum mean discrepancy for class ratio estimation: Convergence bounds and kernel selection
-
A. Iyer, S. Nath, and S. Sarawagi, "Maximum mean discrepancy for class ratio estimation: Convergence bounds and kernel selection," in Proc. Int. Conf. Mach. Learn. (ICML), 2014, pp. 530-538.
-
(2014)
Proc. Int. Conf. Mach. Learn. (ICML)
, pp. 530-538
-
-
Iyer, A.1
Nath, S.2
Sarawagi, S.3
-
24
-
-
85018871069
-
Unsupervised domain adaptation with residual transfer networks
-
M. Long, H. Zhu, J. Wang, and M. I. Jordan, "Unsupervised domain adaptation with residual transfer networks," in Proc. Neural Inf. Process. Syst. (NIPS), 2016, pp. 136-144.
-
(2016)
Proc. Neural Inf. Process. Syst. (NIPS)
, pp. 136-144
-
-
Long, M.1
Zhu, H.2
Wang, J.3
Jordan, M.I.4
-
25
-
-
84888856531
-
Equivalence of distance-based and RKHS-based statistics in hypothesis testing
-
D. Sejdinovic, B. Sriperumbudur, A. Gretton, and K. Fukumizu, "Equivalence of distance-based and RKHS-based statistics in hypothesis testing," Ann. Stat., vol. 41, no. 5, pp. 2263-2291, 2013.
-
(2013)
Ann. Stat.
, vol.41
, Issue.5
, pp. 2263-2291
-
-
Sejdinovic, D.1
Sriperumbudur, B.2
Gretton, A.3
Fukumizu, K.4
-
26
-
-
84969549144
-
Learning transferable features with deep adaptation networks
-
M. Long, Y. Cao, J. Wang, and M. I. Jordan, "Learning transferable features with deep adaptation networks," in Proc. Int. Conf. Mach. Learn. (ICML), 2015, pp. 97-105.
-
(2015)
Proc. Int. Conf. Mach. Learn. (ICML)
, pp. 97-105
-
-
Long, M.1
Cao, Y.2
Wang, J.3
Jordan, M.I.4
-
27
-
-
84937508363
-
How transferable are features in deep neural networks?
-
J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, "How transferable are features in deep neural networks?" in Proc. Neural Inf. Process. Syst. (NIPS), 2014, pp. 3320-3328.
-
(2014)
Proc. Neural Inf. Process. Syst. (NIPS)
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
28
-
-
84969962996
-
Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning
-
May
-
H.-C. Shin et al., "Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285-1298, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1285-1298
-
-
Shin, H.-C.1
-
29
-
-
84986274465
-
Deep residual learning for image recognition
-
Jun.
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 770-778.
-
(2015)
Proc. Comput. Vis. Pattern Recognit.
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
30
-
-
84960980241
-
Faster R-CNN: Towards realtime object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards realtime object detection with region proposal networks," in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2015, pp. 91-99.
-
(2015)
Proc. Adv. Neural Inf. Process. Syst. (NIPS)
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
|