메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 808-823

Maximum mean discrepancy for class ratio estimation: Convergence bounds and kernel selection

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; ESTIMATION; LEARNING SYSTEMS;

EID: 84919819401     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (34)

References (23)
  • 1
    • 34250779439 scopus 로고    scopus 로고
    • A DC-programming algorithm for kernel selection
    • Argyriou, Andreas, Hauser, Raphael, Micchelli, Charles A., and Pontil, Massimiliano. A DC-programming algorithm for kernel selection. In ICML, pp. 41-48, 2006.
    • (2006) ICML , pp. 41-48
    • Argyriou, A.1    Hauser, R.2    Micchelli, C.A.3    Pontil, M.4
  • 2
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and non linear projected subgradient methods for convex opti mization
    • Beck, Amir and Teboulle, Marc. Mirror descent and non linear projected subgradient methods for convex opti mization. Operations Research Letters, 31(3): 167-175, 2003.
    • (2003) Operations Research Letters , vol.31 , Issue.3 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 3
    • 84858716912 scopus 로고    scopus 로고
    • AUC optimization and the two-sample problem
    • Clémencon, Stéphan, Vayatis, Nicolas, and Depecker, Marine. AUC optimization and the two-sample problem. In NIPS, 2009.
    • (2009) NIPS
    • Clémencon, S.1    Vayatis, N.2    Depecker, M.3
  • 4
    • 84897965802 scopus 로고    scopus 로고
    • AUC optimization vs. Error rate minimization
    • Cortes, Corinna and Mohri, Mehryar. AUC optimization vs. error rate minimization. In NIPS, 2004.
    • (2004) NIPS
    • Cortes, C.1    Mohri, M.2
  • 5
    • 70449444642 scopus 로고    scopus 로고
    • Sample selection bias correction theory
    • Cortes, Corinna, Mohri, Mehryar, Riley, Michael, and Rostamizadeh, Afshin. Sample selection bias correction theory. In ALT, 2008.
    • (2008) ALT
    • Cortes, C.1    Mohri, M.2    Riley, M.3    Rostamizadeh, A.4
  • 6
    • 84867577175 scopus 로고    scopus 로고
    • The foundations of cost-sensitive learning
    • Elkan, Charles. The foundations of cost-sensitive learning. IJCAI, 2001.
    • (2001) IJCAI
    • Charles, E.1
  • 7
    • 70450141068 scopus 로고    scopus 로고
    • Technical report Max Planck Institute for Biological Cybernetics
    • Gehler, Peter Vincent and Nowozin, Sebastian. Infinite ker nel learning. Technical report, Max Planck Institute for Biological Cybernetics, 2008.
    • (2008) Infinite Kernel Learning
    • Gehler, P.V.1    Nowozin, S.2
  • 11
  • 12
    • 0036161029 scopus 로고    scopus 로고
    • Support vector machines for classification in nonstandard situations
    • Lin, Yi, Lee, Yoonkyung, and Wahba, Grace. Support vec tor machines for classification in nonstandard situations. Machine Learning Journal, 2002.
    • (2002) Machine Learning Journal
    • Yi, L.1    Yoonkyung, L.2    Grace, W.3
  • 13
    • 84867122342 scopus 로고    scopus 로고
    • Semi-supervised learning of class balance under class-prior change by distribution matching
    • Plessis, Marthinus D. and Sugiyama, Masashi. Semi-supervised learning of class balance under class-prior change by distribution matching. In ICML, 2012.
    • (2012) ICML
    • Plessis Marthinus, D.1    Masashi, S.2
  • 14
    • 0036134369 scopus 로고    scopus 로고
    • Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure
    • Saerens, Marco, Latinne, Patrice, and Decaestecker, Christine. Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure. Neural Computation, 2002.
    • (2002) Neural Computation
    • Saerens, M.1    Latinne, P.2    Decaestecker, C.3
  • 15
    • 83055181685 scopus 로고    scopus 로고
    • Semi-supervised SVMs for classification with unknown class proportions and a small labeled dataset
    • Selvaraj, Sathiya Keerthi, Bhar, Bigyan, Sellamanickam, Sundararajan, and Shevade, Shirish. Semi-supervised SVMs for classification with unknown class proportions and a small labeled dataset. In CIKM, 2011.
    • (2011) CIKM
    • Selvaraj, S.K.1    Bhar, B.2    Sellamanickam, S.3    Shevade, S.4
  • 16
    • 77951951390 scopus 로고    scopus 로고
    • Kernel choice and classifiability for RKHS embeddings of probability distributions
    • Sriperumbudur, Bharath K., Fukumizu, Kenji, Gretton, Arthur, Lanckriet, Gert R. G., and Scholkopf, Bernhard. Kernel choice and classifiability for RKHS embeddings of probability distributions. In NIPS, pp. 1750-1758, 2009.
    • (2009) NIPS , pp. 1750-1758
    • Sriperumbudur, B.K.1    Fukumizu, K.2    Gretton, A.3    Lanckriet, G.R.G.4    Bernhard, S.5
  • 18
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. Large margin methods for structured and interdependent output variables. JMLR, 6:1453-1484, 2005.
    • (2005) JMLR , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 21
    • 84867129026 scopus 로고    scopus 로고
    • Analysis of kernel mean matching under covariate shift
    • Yu, Yaoliang and Szepesvari, Csaba. Analysis of kernel mean matching under covariate shift. In ICML, 2012.
    • (2012) ICML
    • Yaoliang, Y.1    Csaba, S.2
  • 22
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure
    • Yuille, A. L. and Rangarajan, Anand. The concave-convex procedure. Neural Computation, 15(4):915936, 2003.
    • (2003) Neural Computation , vol.15 , Issue.4 , pp. 915936
    • Yuille, A.L.1    Anand, R.2
  • 23
    • 84897514005 scopus 로고    scopus 로고
    • Domain adaptation under target and conditional shift
    • Zhang, Kun, Scholkopf, Bernhard, Muandet, Krikamol, and Wang, Zhikun. Domain adaptation under target and conditional shift. In ICML, 2013.
    • (2013) ICML
    • Kun, Z.1    Bernhard, S.2    Krikamol, M.3    Zhikun, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.