메뉴 건너뛰기




Volumn 53, Issue 2, 2017, Pages 167-185

Prediction of compressive strength of self-compacting concrete using intelligent computational modeling

Author keywords

Adaptive neuro fuzzy inference system (ANFIS); Compressive strength; Extreme learning machine (ELM); Multi adaptive regression spline (MARS); Self compacting concrete (SCC)

Indexed keywords

COMPRESSIVE STRENGTH; COMPUTATION THEORY; CONCRETES; FLY ASH; FORECASTING; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; SPLINES;

EID: 85035320586     PISSN: 15462218     EISSN: 15462226     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (42)

References (29)
  • 4
    • 84887517081 scopus 로고    scopus 로고
    • A systematical water allocation scheme for drought mitigation control
    • Chang, F.-J., Wang, K.-W. (2013): A systematical water allocation scheme for drought mitigation control, Journal of Hydrology 507:124-133.
    • (2013) Journal of Hydrology , vol.507 , pp. 124-133
    • Chang, F.-J.1    Wang, K.-W.2
  • 5
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
    • Craven P, Wahba G. (1979): Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerical Mathematics 31:317-403.
    • (1979) Numerical Mathematics , vol.31 , pp. 317-403
    • Craven, P.1    Wahba, G.2
  • 6
    • 0027642557 scopus 로고
    • A comparison of two nonparametric estimation schemes: MARS and neural networks
    • De Veaux RD, Psichogios DC, Ungar LH. (1993): A comparison of two nonparametric estimation schemes: MARS and neural networks. Comput. Chem. Eng 17(8):819-837.
    • (1993) Comput. Chem. Eng , vol.17 , Issue.8 , pp. 819-837
    • De Veaux, R.D.1    Psichogios, D.C.2    Ungar, L.H.3
  • 7
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman JH (1991): Multivariate Adaptive Regression Splines. Annals of Statistics 19: 1-141.
    • (1991) Annals of Statistics , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 8
    • 84906946031 scopus 로고    scopus 로고
    • A study on residence error of training an extreme learning machine and its application to evolutionary algorithms
    • Fu, A.-M., Wang, X.-Z., He, Y.-L., Wang, L.-S. (2014): A study on residence error of training an extreme learning machine and its application to evolutionary algorithms, Neurocomputing 146:75-82.
    • (2014) Neurocomputing , vol.146 , pp. 75-82
    • Fu, A.-M.1    Wang, X.-Z.2    He, Y.-L.3    Wang, L.-S.4
  • 10
    • 84890825531 scopus 로고    scopus 로고
    • Applications of extreme learning machine optimized by ICPSO in fault diagnosis
    • Gao, F., Li, H., Xu, B. (2013): Applications of extreme learning machine optimized by ICPSO in fault diagnosis, Zhongguo Jixie Gongcheng/China Mechanical Engineering, 24(20):2753-2757.
    • (2013) Zhongguo Jixie Gongcheng/China Mechanical Engineering , vol.24 , Issue.20 , pp. 2753-2757
    • Gao, F.1    Li, H.2    Xu, B.3
  • 11
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • Huang GB, Babri HA. (1998): Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans Neural Networks. 9(1): 224-229.
    • (1998) IEEE Trans Neural Networks , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.B.1    Babri, H.A.2
  • 13
    • 33645588429 scopus 로고    scopus 로고
    • Extreme learning machine with randomly assigned RBF kernels
    • Huang GB, Siew CK. (2005): Extreme Learning Machine with Randomly Assigned RBF Kernels. Int'l J. Information Technology. 11(1).
    • (2005) Int'l J. Information Technology , vol.11 , Issue.1
    • Huang, G.B.1    Siew, C.K.2
  • 14
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: A new learning scheme of feedforward neural networks
    • Budapest, Hungary, Jul. 25-29, 2004
    • Huang GB, Zhu QY, Siew CK. (2004): Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. Proc. Int'l Joint Conf. Neural Networks, Budapest, Hungary, Jul. 25-29, 2004, 2: 985-990
    • (2004) Proc. Int'l Joint Conf. Neural Networks , vol.2 , pp. 985-990
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 15
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden-layer feed forward networks
    • Huang GB. (2003): Learning capability and storage capacity of two-hidden-layer Feed forward networks. IEEE Trans Neural Networks. 14(2): 274-281.
    • (2003) IEEE Trans Neural Networks , vol.14 , Issue.2 , pp. 274-281
    • Huang, G.B.1
  • 16
    • 0025572867 scopus 로고
    • An energy approach for assessing seismic liquefaction potential
    • K. T. Law, Y. L. Cao & G. N. He. (1990): An energy approach for assessing seismic liquefaction potential, Canadian Geotechnical Journal. 27(3): 320-329.
    • (1990) Canadian Geotechnical Journal , vol.27 , Issue.3 , pp. 320-329
    • Law, K.T.1    Cao, Y.L.2    He, G.N.3
  • 17
    • 84913558449 scopus 로고    scopus 로고
    • Rapid multi-nation distribution assessment of a charismatic conservation species using open access ensemble model GIS predictions: Red panda (Ailurus fulgens) in the Hindu-Kush Himalaya region
    • Kandel, K., Huettmann, F., Suwal, M.K., Ram Regmi, G., Nijman, V., Nekaris, K.A.I., Lama, S.T., Thapa, A., Sharma, H.P., Subedi, T.R. (2015): Rapid multi-nation distribution assessment of a charismatic conservation species using open access ensemble model GIS predictions: Red panda (Ailurus fulgens) in the Hindu-Kush Himalaya region, Biological Conservation 181:150-161.
    • (2015) Biological Conservation , vol.181 , pp. 150-161
    • Kandel, K.1    Huettmann, F.2    Suwal, M.K.3    Ram Regmi, G.4    Nijman, V.5    Nekaris, K.A.I.6    Lama, S.T.7    Thapa, A.8    Sharma, H.P.9    Subedi, T.R.10
  • 19
    • 0025925861 scopus 로고
    • Earthquake-induced permanent deformations: Probabilistic approach
    • M. K. Yegian, E. A. Marciano. (1991): Earthquake-Induced Permanent Deformations: Probabilistic Approach, J. Geotech. Engrg. 117(1):35-50.
    • (1991) J. Geotech. Engrg. , vol.117 , Issue.1 , pp. 35-50
    • Yegian, M.K.1    Marciano, E.A.2
  • 20
    • 84899888246 scopus 로고    scopus 로고
    • Linking multi-temporal satellite imagery to coastal wetland dynamics and bird distribution
    • Pickens, B.A., King, S.L. (2014): Linking multi-temporal satellite imagery to coastal wetland dynamics and bird distribution, Ecological Modelling 285:1-12.
    • (2014) Ecological Modelling , vol.285 , pp. 1-12
    • Pickens, B.A.1    King, S.L.2
  • 21
    • 84922496550 scopus 로고    scopus 로고
    • A combination of computational fluid dynamics (CFD) and adaptive neuro-fuzzy system (ANFIS) for prediction of the bubble column hydrodynamics
    • Pourtousi, M., Sahu, J.N., Ganesan, P., Shamshirband, S., Redzwan, G. (2015): A combination of computational fluid dynamics (CFD) and adaptive neuro-fuzzy system (ANFIS) for prediction of the bubble column hydrodynamics, Powder Technology 274:466-481.
    • (2015) Powder Technology , vol.274 , pp. 466-481
    • Pourtousi, M.1    Sahu, J.N.2    Ganesan, P.3    Shamshirband, S.4    Redzwan, G.5
  • 22
    • 84870904359 scopus 로고    scopus 로고
    • Classification of tuberculosis digital images using hybrid evolutionary extreme learning machines
    • Priya, E., Srinivasan, S., Ramakrishnan, S. (2012): Classification of tuberculosis digital images using hybrid evolutionary extreme learning machines, Computational Collective Intelligence 7653: 268-277.
    • (2012) Computational Collective Intelligence , vol.7653 , pp. 268-277
    • Priya, E.1    Srinivasan, S.2    Ramakrishnan, S.3
  • 23
    • 79960839561 scopus 로고    scopus 로고
    • Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural network
    • Rafat Siddique, Paratibha Aggarwal, Yogesh Aggarwal (2011): Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural network, Advances in Engineering Software 42(10): 780-786.
    • (2011) Advances in Engineering Software , vol.42 , Issue.10 , pp. 780-786
    • Siddique, R.1    Aggarwal, P.2    Aggarwal, Y.3
  • 25
    • 84939266144 scopus 로고    scopus 로고
    • Data mining using regularized adaptive B-splines regression with penalization for multi-regime traffic stream models
    • Sun, L., Pan, Y., Gu, W. (2013): Data mining using regularized adaptive B-splines regression with penalization for multi-regime traffic stream models, Journal of Advanced Transportation, 48(7):876-890.
    • (2013) Journal of Advanced Transportation , vol.48 , Issue.7 , pp. 876-890
    • Sun, L.1    Pan, Y.2    Gu, W.3
  • 26
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling, systems, man and cybernetics
    • Takagi and Sugeno (1985): Fuzzy Identification of Systems and its Applications to Modeling, Systems, Man and Cybernetics, IEEE Transactions, 15(1): 116-132.
    • (1985) IEEE Transactions , vol.15 , Issue.1 , pp. 116-132
  • 27
    • 84921916753 scopus 로고    scopus 로고
    • A self-adaptive hybrid approach for wind speed forecasting
    • Wang, J., Hu, J., Ma, K., Zhang, Y. (2015): A self-adaptive hybrid approach for wind speed forecasting, Renewable Energy, 78: 374-385.
    • (2015) Renewable Energy , vol.78 , pp. 374-385
    • Wang, J.1    Hu, J.2    Ma, K.3    Zhang, Y.4
  • 28
    • 0042262564 scopus 로고    scopus 로고
    • A multivariate adaptive regression splines model for simulation of pesticide transport in soils
    • Yang CC, Prasher SO, Lacroix R, Kim SH (2003): A Multivariate Adaptive Regression Splines Model for Simulation of Pesticide Transport in Soils, Biosystems Engineering, 86(1): 9-15.
    • (2003) Biosystems Engineering , vol.86 , Issue.1 , pp. 9-15
    • Yang, C.C.1    Prasher, S.O.2    Lacroix, R.3    Kim, S.H.4
  • 29
    • 84906512655 scopus 로고    scopus 로고
    • Performance prediction of a hybrid microgeneration system using adaptive neuro-fuzzy inference system (ANFIS) technique
    • Yang, L., Entchev, E. (2014): Performance prediction of a hybrid microgeneration system using adaptive neuro-fuzzy inference system (ANFIS) technique, Applied Energy, 134: 197-203.
    • (2014) Applied Energy , vol.134 , pp. 197-203
    • Yang, L.1    Entchev, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.