메뉴 건너뛰기




Volumn 146, Issue , 2014, Pages 75-82

A study on residence error of training an extreme learning machine and its application to evolutionary algorithms

Author keywords

Extreme learning machine; Genetic algorithm; Rank of matrix; Residence error; Solution stability

Indexed keywords

ALGORITHMS; GENETIC ALGORITHMS; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; MATRIX ALGEBRA;

EID: 84906946031     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.04.067     Document Type: Article
Times cited : (24)

References (29)
  • 1
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
    • Bartlett P.L. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 1998, 44(2):525-536.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 2
    • 84861524095 scopus 로고    scopus 로고
    • Handwritten character recognition using wavelet energy and extreme learning machine
    • Chacko B.P., Krishnan V.R.V., Raju G., Anto P.B. Handwritten character recognition using wavelet energy and extreme learning machine. Int. J. Mach. Learn. Cybern. 2012, 3(2):149-161.
    • (2012) Int. J. Mach. Learn. Cybern. , vol.3 , Issue.2 , pp. 149-161
    • Chacko, B.P.1    Krishnan, V.R.V.2    Raju, G.3    Anto, P.B.4
  • 4
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng G.R., Huang G.B., Lin Q.P., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 2009, 20(8):1352-1357.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.8 , pp. 1352-1357
    • Feng, G.R.1    Huang, G.B.2    Lin, Q.P.3    Gay, R.4
  • 6
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4:251-257.
    • (1991) Neural Netw. , vol.4 , pp. 251-257
    • Hornik, K.1
  • 7
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • Huang G.B., Babri H.A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Netw. 1998, 9(1):224-229.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.B.1    Babri, H.A.2
  • 8
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G.B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70(16-18):3056-3062.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.B.1    Chen, L.2
  • 9
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G.B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71(16-18):3460-3468.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.B.1    Chen, L.2
  • 10
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17(4):879-892.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 11
    • 0034187311 scopus 로고    scopus 로고
    • Classification ability of single hidden layer feedforward neural networks
    • Huang G.B., Chen Y.Q., Babri H.A. Classification ability of single hidden layer feedforward neural networks. IEEE Trans. Neural Netw. 2000, 11(3):799-801.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.3 , pp. 799-801
    • Huang, G.B.1    Chen, Y.Q.2    Babri, H.A.3
  • 15
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 16
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • Leshno M., Lin V.Y., Pinkus A., Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 1993, 6:861-867.
    • (1993) Neural Netw. , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3    Schocken, S.4
  • 17
    • 0036715627 scopus 로고    scopus 로고
    • A species conserving genetic algorithm for multimodal function optimization
    • Li J.P., Balazs M.E., Parks G.T., Clarkson P.J. A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 2002, 10(3):207-234.
    • (2002) Evol. Comput. , vol.10 , Issue.3 , pp. 207-234
    • Li, J.P.1    Balazs, M.E.2    Parks, G.T.3    Clarkson, P.J.4
  • 19
    • 24944462458 scopus 로고    scopus 로고
    • An improved backpropagation algorithm using absolute error function
    • Lv J.C., Yi Z. An improved backpropagation algorithm using absolute error function. Lect. Notes Comput. Sci. 2005, 3496:585-590.
    • (2005) Lect. Notes Comput. Sci. , vol.3496 , pp. 585-590
    • Lv, J.C.1    Yi, Z.2
  • 20
    • 59649083826 scopus 로고    scopus 로고
    • Differential evolution algorithm with strategy adaptation for global numerical optimization
    • Qin A.K., Huang V.L., Suganthan P.N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 2009, 13(2):398-417.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.2 , pp. 398-417
    • Qin, A.K.1    Huang, V.L.2    Suganthan, P.N.3
  • 21
    • 84870254532 scopus 로고    scopus 로고
    • Eeg-based vigilance estimation using extreme learning machines
    • Shi L.C., Lu B.L. Eeg-based vigilance estimation using extreme learning machines. Neurocomputing 2013, 102:135-143.
    • (2013) Neurocomputing , vol.102 , pp. 135-143
    • Shi, L.C.1    Lu, B.L.2
  • 24
    • 84865784890 scopus 로고    scopus 로고
    • A study on random weights between input and hidden layers in extreme learning machine
    • Wang R., Kwong S., Wang X.Z. A study on random weights between input and hidden layers in extreme learning machine. Soft Comput. 2012, 16(9):1465-1475.
    • (2012) Soft Comput. , vol.16 , Issue.9 , pp. 1465-1475
    • Wang, R.1    Kwong, S.2    Wang, X.Z.3
  • 25
    • 80051593049 scopus 로고    scopus 로고
    • Upper integral network with extreme learning mechanism
    • Wang X.Z., Chen A.X., Feng H.M. Upper integral network with extreme learning mechanism. Neurocomputing 2011, 74(16):2520-2525.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2520-2525
    • Wang, X.Z.1    Chen, A.X.2    Feng, H.M.3
  • 26
    • 84870234983 scopus 로고    scopus 로고
    • Architecture selection for networks trained with extreme learning machine using localized generalization error model
    • Wang X.Z., Shao Q.Y., Miao Q., Zhai J.H. Architecture selection for networks trained with extreme learning machine using localized generalization error model. Neurocomputing 2013, 102:3-9.
    • (2013) Neurocomputing , vol.102 , pp. 3-9
    • Wang, X.Z.1    Shao, Q.Y.2    Miao, Q.3    Zhai, J.H.4
  • 27
    • 80051669013 scopus 로고    scopus 로고
    • A study on effectiveness of extreme learning machine
    • Wang Y.G., Cao F.L., Yuan Y.B. A study on effectiveness of extreme learning machine. Neurocomputing 2011, 74(16):2483-2490.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2483-2490
    • Wang, Y.G.1    Cao, F.L.2    Yuan, Y.B.3
  • 28
    • 81255152339 scopus 로고    scopus 로고
    • Positive and negative fuzzy rule system, extreme learning machine and image classification
    • Wu J., Wang S.T., Chung F.L. Positive and negative fuzzy rule system, extreme learning machine and image classification. Int. J. Mach. Learn. Cybern. 2011, 2(4):261-271.
    • (2011) Int. J. Mach. Learn. Cybern. , vol.2 , Issue.4 , pp. 261-271
    • Wu, J.1    Wang, S.T.2    Chung, F.L.3
  • 29
    • 84867839878 scopus 로고    scopus 로고
    • Universal approximation of extreme learning machine with adaptive growth of hidden nodes
    • Zhang R., Lan Y., Huang G.B., Xu Z.B. Universal approximation of extreme learning machine with adaptive growth of hidden nodes. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23(2):365-371.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.2 , pp. 365-371
    • Zhang, R.1    Lan, Y.2    Huang, G.B.3    Xu, Z.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.